1
|
Ying W, Su Y, Chen ZH, Wang Y, Huo P. Spin relaxation dynamics with a continuous spin environment: The dissipaton equation of motion approach. J Chem Phys 2024; 161:144112. [PMID: 39387409 DOI: 10.1063/5.0225734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
We investigate the quantum dynamics of a spin coupling to a bath of independent spins via the dissipaton equation of motion (DEOM) approach. The bath, characterized by a continuous spectral density function, is composed of spins that are independent level systems described by the su(2) Lie algebra, representing an environment with a large magnitude of anharmonicity. Based on the previous work by Suarez and Silbey [J. Chem. Phys. 95, 9115 (1991)] and by Makri [J. Chem. Phys. 111, 6164 (1999)] that the spin bath can be mapped to a Gaussian environment under its linear response limit, we use the time-domain Prony fitting decomposition scheme to the bare-bath time correlation function (TCF) given by the bosonic fluctuation-dissipation theorem to generate the exponential decay basis (or pseudo modes) for DEOM construction. The accuracy and efficiency of this strategy have been explored by a variety of numerical results. We envision that this work provides new insights into extending the hierarchical equations of motion and DEOM approach to certain types of anharmonic environments with arbitrary TCF or spectral density.
Collapse
Affiliation(s)
- Wenxiang Ying
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Yu Su
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Hao Chen
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yao Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
2
|
Zhou L, Gao X, Shuai Z. A stochastic Schrödinger equation and matrix product state approach to carrier transport in organic semiconductors with nonlocal electron-phonon interaction. J Chem Phys 2024; 161:084118. [PMID: 39212211 DOI: 10.1063/5.0221143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Evaluation of the charge transport property of organic semiconductors requires exact quantum dynamics simulation of large systems. We present a numerically nearly exact approach to investigate carrier transport dynamics in organic semiconductors by extending the non-Markovian stochastic Schrödinger equation with complex frequency modes to a forward-backward scheme and by solving it using the matrix product state (MPS) approach. By utilizing the forward-backward formalism for noise generation, the bath correlation function can be effectively treated as a temperature-independent imaginary part, enabling a more accurate decomposition with fewer complex frequency modes. Using this approach, we study the carrier transport and mobility in the one-dimensional Peierls model, where the nonlocal electron-phonon interaction is taken into account. The reliability of this approach was validated by comparing carrier diffusion motion with those obtained from the hierarchical equations of motion method across various parameter regimes of the phonon bath. The efficiency was demonstrated by the modest virtual bond dimensions of MPS and the low scaling of the computational time with the system size.
Collapse
Affiliation(s)
- Liqi Zhou
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xing Gao
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
3
|
Cai X, Feng Y, Ren J, Peng Y, Zheng Y. Quantum decoherence dynamics in stochastically fluctuating environments. J Chem Phys 2024; 161:044106. [PMID: 39041876 DOI: 10.1063/5.0217863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
We theoretically study the decoherence of a two-level quantum system coupled to noisy environments exhibiting linear and quadratic fluctuations within the framework of a stochastic Liouville equation. It is shown that the intrinsic energy levels of the quantum system renormalize under either the linear or quadratic influence of the environmental noise. In the case of quadratic dependence, the renormalization of the energy levels of the system emerges even if the environmental noise exhibits stationary statistical properties. This is in contrast to the case under linear influence, where the intrinsic energy levels of the system renormalize only if the environmental noise displays nonstationary statistics. We derive the analytical expressions of the decoherence function in the cases where the fluctuation of the frequency difference depends linearly and quadratically on the nonstationary Ornstein-Uhlenbeck noise (OUN) and random telegraph noise (RTN) processes, respectively. In the case of the linear dependence of the OUN, the environmental nonstationary statistical property can enhance the dynamical decoherence. However, the nonstationary statistics of the environmental noise can suppress the quantum decoherence in this case under the quadratic influence of the OUN. In the presence of the RTN, the quadratic influence of the environmental noise does not give rise to decoherence but only causes a determinate frequency renormalization in dynamical evolution. The environmental nonstationary statistical property can suppress the quantum decoherence of the case under the linear influence of the RTN.
Collapse
Affiliation(s)
- Xiangji Cai
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Yanyan Feng
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Jing Ren
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Yonggang Peng
- School of Physics, Shandong University, Jinan 250100, China
| | - Yujun Zheng
- School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
4
|
Sindhu A, Jain A. Electronic energy transfer in molecular wire: Coherences in the presence of anharmonicity. J Chem Phys 2024; 160:204117. [PMID: 38814012 DOI: 10.1063/5.0196606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Electronic energy transfer in molecular wires is usually theoretically investigated with a harmonic bath to model the environment. The present study is a continuation of our previous work [A. Sindhu and A. Jain, Chem. Phys. Chem. 23, e2022003 (2022)] on studying the dynamics of molecular wires using surface hopping simulations. We extend our study to a 7-site model Hamiltonian and investigate the effects of an anharmonic bath on coherent energy transfer in molecular wires. We show that oscillatory and coherent population dynamics remain intact even in the presence of the anharmonic bath and further highlight the multiple channels available for energy flow in molecular wires.
Collapse
Affiliation(s)
- Aarti Sindhu
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Amber Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
5
|
Funo K, Ishizaki A. Dynamics of a Quantum System Interacting with White Non-Gaussian Baths: Poisson Noise Master Equation. PHYSICAL REVIEW LETTERS 2024; 132:170402. [PMID: 38728715 DOI: 10.1103/physrevlett.132.170402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024]
Abstract
Quantum systems are unavoidably open to their surrounding degrees of freedom. The theory of open quantum systems is thus crucial to understanding the fluctuations, dissipation, and decoherence of a quantum system of interest. Typically, the bath is modeled as an ensemble of harmonic oscillators, which yields Gaussian statistics of the bath influence on the quantum systems. However, there are also phenomena in which the bath consists of two-state systems, spins, or anharmonic oscillators; therefore, the non-Gaussian properties of the bath become important. Nevertheless, a theoretical framework to describe quantum systems under the influence of such non-Gaussian baths is not well established. Here, we develop a theory to describe quantum dissipative systems affected by Poisson noise properties of the bath, because the Lévi-Itô decomposition theorem asserts that Poisson noise is fundamental in describing arbitrary white noise beyond Gaussian properties. We introduce a quantum bath model that allows for the consistent description of dissipative quantum systems. The obtained master equation reveals non-Gaussian bath effects in the white noise regime, and provides an essential step toward describing open quantum dynamics under the influence of generic baths.
Collapse
Affiliation(s)
- Ken Funo
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| |
Collapse
|
6
|
Yuen-Zhou J, Koner A. Linear response of molecular polaritons. J Chem Phys 2024; 160:154107. [PMID: 38624118 DOI: 10.1063/5.0183683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/15/2024] [Indexed: 04/17/2024] Open
Abstract
In this article, we show that the collective light-matter strong coupling regime where N molecular emitters couple to the photon mode of an optical cavity can be mapped to a quantum impurity model where the photon is the impurity that is coupled to a bath of anharmonic transitions. In the thermodynamic limit where N ≫ 1, we argue that the bath can be replaced with an effective harmonic bath, leading to a dramatic simplification of the problem into one of the coupled harmonic oscillators. We derive simple analytical expressions for linear optical spectra (transmission, reflection, and absorption) where the only molecular input required is the molecular linear susceptibility. This formalism is applied to a series of illustrative examples, showing the role of temperature, disorder, vibronic coupling, and optical saturation of the molecular ensemble, explaining that it is useful even when describing an important class of nonlinear optical experiments. For completeness, we provide Appendixes A-C that include a self-contained derivation of the relevant spectroscopic observables for arbitrary anharmonic systems (for both large and small N) within the rotating-wave approximation. While some of the presented results herein have already been reported in the literature, we provide a unified presentation of the results as well as new interpretations that connect powerful concepts in open quantum systems and linear response theory with molecular polaritonics.
Collapse
Affiliation(s)
- Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Arghadip Koner
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
7
|
Su Y, Wang Y, Xu RX, Yan Y. Generalized system-bath entanglement theorem for Gaussian environments. J Chem Phys 2024; 160:084104. [PMID: 38385516 DOI: 10.1063/5.0193530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The entanglement between system and bath often plays a pivotal role in complex systems spanning multiple orders of magnitude. A system-bath entanglement theorem was previously established for Gaussian environments in J. Chem. Phys. 152, 034102 (2020) regarding linear response functions. This theorem connects the entangled responses to the local system and bare bath properties. In this work, we generalize it to correlation functions. Key steps in derivations involve using the generalized Langevin dynamics for hybridizing bath modes and the Bogoliubov transformation that maps the original finite-temperature reservoir to an effective zero-temperature vacuum by employing an auxiliary bath. The generalized theorem allows us to evaluate the system-bath entangled correlations and the bath mode correlations in the total composite space, as long as we know the bare-bath statistical properties and obtain the reduced system correlations. To demonstrate the cross-scale entanglements, we utilize the generalized theorem to calculate the solvation free energy of an electron transfer system with intramolecular vibrational modes.
Collapse
Affiliation(s)
- Yu Su
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Rui-Xue Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
8
|
Chen ZH, Wang Y, Xu RX, Yan Y. Open quantum systems with nonlinear environmental backactions: Extended dissipaton theory vs core-system hierarchy construction. J Chem Phys 2023; 158:074102. [PMID: 36813728 DOI: 10.1063/5.0134700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In this paper, we present a comprehensive account of quantum dissipation theories with the quadratic environment couplings. The theoretical development includes the Brownian solvation mode embedded hierarchical quantum master equations, a core-system hierarchy construction that verifies the extended dissipaton equation of motion (DEOM) formalism [R. X. Xu et al., J. Chem. Phys. 148, 114103 (2018)]. Developed are also the quadratic imaginary-time DEOM for equilibrium and the λ(t)-DEOM for nonequilibrium thermodynamics problems. Both the celebrated Jarzynski equality and Crooks relation are accurately reproduced, which, in turn, confirms the rigorousness of the extended DEOM theories. While the extended DEOM is more numerically efficient, the core-system hierarchy quantum master equation is favorable for "visualizing" the correlated solvation dynamics.
Collapse
Affiliation(s)
- Zi-Hao Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Wang Y, Chen ZH, Xu RX, Zheng X, Yan Y. A statistical quasi-particles thermofield theory with Gaussian environments: System-bath entanglement theorem for nonequilibrium correlation functions. J Chem Phys 2022; 157:044102. [DOI: 10.1063/5.0094875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
For open quantum systems, environmental dissipative effect can be represented by statistical quasi-particles, namely dissipatons. We exploit this fact to establish the dissipaton thermofield theory. The resulting generalized Langevin dynamics of absorptive and emissive thermofield operators are effectively noise-resolved. The system-bath entanglement theorem is then readily followed between a important class of nonequilibrium steady-state correlation functions. All these relations are validated numerically. A simple corollary is the transport current expression, which exactly recovers the result obtained from the nonequilibrium Green's function formalism.
Collapse
Affiliation(s)
- Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - Zi-Hao Chen
- University of Science and Technology of China, China
| | - Rui-Xue Xu
- University of Science and Technology of China, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - YiJing Yan
- Department of Chemical Physics, USTC, China
| |
Collapse
|
10
|
Ke Y, Borrelli R, Thoss M. Hierarchical equations of motion approach to hybrid fermionic and bosonic environments: Matrix product state formulation in twin space. J Chem Phys 2022; 156:194102. [DOI: 10.1063/5.0088947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We extend the twin-space formulation of the hierarchical equations of motion approach in combination with the matrix product state representation (introduced in J. Chem. Phys. 150, 234102, [2019]) to nonequilibrium scenarios where the open quantum system is coupled to a hybrid fermionic and bosonic environment. The key ideas used in the extension are a reformulation of the hierarchical equations of motion for the auxiliary density matrices into a time-dependent Schrödinger-like equation for an augmented multi-dimensional wave function as well as a tensor decomposition into a product of low-rank matrices. The new approach facilitates accurate simulations of non-equilibrium quantum dynamics in larger and more complex open quantum systems. The performance of the method is demonstrated for a model of a molecular junction exhibiting current-induced mode-selective vibrational excitation.
Collapse
Affiliation(s)
- Yaling Ke
- Institute of Physics, Albert-Ludwigs-Universität Freiburg, Germany
| | - Raffaele Borrelli
- Department of Agricoltural Science, Università degli Studi di Torino, Italy
| | - Michael Thoss
- University of Freiburg Institute of Physics, Germany
| |
Collapse
|
11
|
Nakamura K, Tanimura Y. Open quantum dynamics theory for a complex subenvironment system with a quantum thermostat: Application to a spin heat bath. J Chem Phys 2021; 155:244109. [PMID: 34972367 DOI: 10.1063/5.0074047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Complex environments, such as molecular matrices and biological material, play a fundamental role in many important dynamic processes in condensed phases. Because it is extremely difficult to conduct full quantum dynamics simulations on such environments due to their many degrees of freedom, here, we treat in detail the environment only around the main system of interest (the subenvironment), while the other degrees of freedom needed to maintain the equilibrium temperature are described by a simple harmonic bath, which we call a quantum thermostat. The noise generated by the subenvironment is spatially non-local and non-Gaussian and cannot be characterized by the fluctuation-dissipation theorem. We describe this model by simulating the dynamics of a two-level system (TLS) that interacts with a subenvironment consisting of a one-dimensional XXZ spin chain. The hierarchical Schrödinger equations of motion are employed to describe the quantum thermostat, allowing for time-irreversible simulations of the dynamics at arbitrary temperature. To see the effects of a quantum phase transition of the subenvironment, we investigate the decoherence and relaxation processes of the TLS at zero and finite temperatures for various values of the spin anisotropy. We observed the decoherence of the TLS at finite temperature even when the anisotropy of the XXZ model is enormous. We also found that the population-relaxation dynamics of the TLS changed in a complex manner with the change in the anisotropy and the ferromagnetic or antiferromagnetic orders of spins.
Collapse
Affiliation(s)
- Kiyoto Nakamura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyoku, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyoku, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Chen ZH, Wang Y, Xu RX, Yan Y. Quantum dissipation with nonlinear environment couplings: Stochastic fields dressed dissipaton equation of motion approach. J Chem Phys 2021; 155:174111. [PMID: 34742182 DOI: 10.1063/5.0067880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurate and efficient simulation on quantum dissipation with nonlinear environment couplings remains a challenging task nowadays. In this work, we propose to incorporate the stochastic fields, which resolve just the nonlinear environment coupling terms, into the dissipaton-equation-of-motion (DEOM) construction. The stochastic fields are introduced via the Hubbard-Stratonovich transformation. After the transformation, the resulted stochastic-fields-dressed (SFD) total Hamiltonian contains only linear environment coupling terms. On the basis of that, SFD-DEOM can then be constructed. The resultant SFD-DEOM, together with the ensemble average over the stochastic fields, constitutes an exact and nonperturbative approach to quantum dissipation under nonlinear environment couplings. It is also of relatively high efficiency and stability due to the fact that only nonlinear environment coupling terms are dealt with stochastic fields, while linear couplings are still treated as the usual DEOM. Numerical performance and demonstrations are presented with a two-state model system.
Collapse
Affiliation(s)
- Zi-Hao Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Wang Y, Su Y, Xu RX, Zheng X, Yan Y. Marcus’ electron transfer rate revisited via a Rice-Ramsperger-Kassel-Marcus analogue: A unified formalism for linear and nonlinear solvation scenarios. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2101004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Yu Su
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Rui-Xue Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Gelin MF, Borrelli R, Chen L. Hierarchical Equations-of-Motion Method for Momentum System-Bath Coupling. J Phys Chem B 2021; 125:4863-4873. [PMID: 33929205 PMCID: PMC8279550 DOI: 10.1021/acs.jpcb.1c02431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For a broad class of quantum models of practical interest, we demonstrate that the Hamiltonian of the system nonlinearly coupled to a harmonic bath through the system and bath coordinates can be equivalently mapped into the Hamiltonian of the system bilinearly coupled to the bath through the system and bath momenta. We show that the Hamiltonian with bilinear system-bath momentum coupling can be treated by the hierarchical equations-of-motion (HEOM) method and present the corresponding proof-of-principle simulations. The developed methodology creates the opportunity to scrutinize a new family of nonlinear quantum systems by the numerically accurate HEOM method.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany
| |
Collapse
|
15
|
Herrera Rodríguez LE, Kananenka AA. Convolutional Neural Networks for Long Time Dissipative Quantum Dynamics. J Phys Chem Lett 2021; 12:2476-2483. [PMID: 33666085 DOI: 10.1021/acs.jpclett.1c00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exact numerical simulations of dynamics of open quantum systems often require immense computational resources. We demonstrate that a deep artificial neural network composed of convolutional layers is a powerful tool for predicting long-time dynamics of open quantum systems provided the preceding short-time evolution of a system is known. The neural network model developed in this work simulates long-time dynamics efficiently and accurately across different dynamical regimes from weakly damped coherent motion to incoherent relaxation. The model was trained on a data set relevant to photosynthetic excitation energy transfer and can be deployed to study long-lasting quantum coherence phenomena observed in light-harvesting complexes. Furthermore, our model performs well for the initial conditions different than those used in the training. Our approach reduces the required computational resources for long-time simulations and holds the promise for becoming a valuable tool in the study of open quantum systems.
Collapse
Affiliation(s)
- Luis E Herrera Rodríguez
- Departamento de Física, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá D.C., Colombia
- Escuela de Ciencias Básicas, Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, Facatativá, Colombia
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Alexei A Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
16
|
Tanimura Y. Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM). J Chem Phys 2021; 153:020901. [PMID: 32668942 DOI: 10.1063/5.0011599] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An open quantum system refers to a system that is further coupled to a bath system consisting of surrounding radiation fields, atoms, molecules, or proteins. The bath system is typically modeled by an infinite number of harmonic oscillators. This system-bath model can describe the time-irreversible dynamics through which the system evolves toward a thermal equilibrium state at finite temperature. In nuclear magnetic resonance and atomic spectroscopy, dynamics can be studied easily by using simple quantum master equations under the assumption that the system-bath interaction is weak (perturbative approximation) and the bath fluctuations are very fast (Markovian approximation). However, such approximations cannot be applied in chemical physics and biochemical physics problems, where environmental materials are complex and strongly coupled with environments. The hierarchical equations of motion (HEOM) can describe the numerically "exact" dynamics of a reduced system under nonperturbative and non-Markovian system-bath interactions, which has been verified on the basis of exact analytical solutions (non-Markovian tests) with any desired numerical accuracy. The HEOM theory has been used to treat systems of practical interest, in particular, to account for various linear and nonlinear spectra in molecular and solid state materials, to evaluate charge and exciton transfer rates in biological systems, to simulate resonant tunneling and quantum ratchet processes in nanodevices, and to explore quantum entanglement states in quantum information theories. This article presents an overview of the HEOM theory, focusing on its theoretical background and applications, to help further the development of the study of open quantum dynamics.
Collapse
Affiliation(s)
- Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Ullah A, Han L, Yan YA, Zheng X, Yan Y, Chernyak V. Stochastic equation of motion approach to fermionic dissipative dynamics. II. Numerical implementation. J Chem Phys 2020; 152:204106. [DOI: 10.1063/1.5142166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Arif Ullah
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yun-An Yan
- School of Physics and Optoelectronic Engineering, Ludong University, Shandong 264025, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Vladimir Chernyak
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| |
Collapse
|
18
|
Han L, Ullah A, Yan YA, Zheng X, Yan Y, Chernyak V. Stochastic equation of motion approach to fermionic dissipative dynamics. I. Formalism. J Chem Phys 2020; 152:204105. [DOI: 10.1063/1.5142164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Lu Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Arif Ullah
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yun-An Yan
- School of Physics and Optoelectronic Engineering, Ludong University, Shandong 264025, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale & iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Vladimir Chernyak
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| |
Collapse
|
19
|
Cai X. Quantum dephasing induced by non-Markovian random telegraph noise. Sci Rep 2020; 10:88. [PMID: 31919455 PMCID: PMC6952372 DOI: 10.1038/s41598-019-57081-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/17/2019] [Indexed: 11/08/2022] Open
Abstract
We theoretically study the dynamical dephasing of a quantum two level system interacting with an environment which exhibits non-Markovian random telegraph fluctuations. The time evolution of the conditional probability of the environmental noise is governed by a generalized master equation depending on the environmental memory effect. The expression of the dephasing factor is derived exactly which is closely associated with the memory kernel in the generalized master equation for the conditional probability of the environmental noise. In terms of three important types memory kernels, we discuss the quantum dephasing dynamics of the system and the non-Markovian character exhibiting in the dynamical dephasing induced by non-Markovian random telegraph noise. We show that the dynamical dephasing of the quantum system does not always exhibit non-Markovian character which results from that the non-Markovian character in the dephasing dynamics depends both on the environmental non-Markovian character and the interaction between the system and environment. In addition, the dynamical dephasing of the quantum system can be modulated by the external modulation frequency of the environment. This result is significant to quantum information processing and helpful for further understanding non-Markovian dynamics of open quantum systems.
Collapse
Affiliation(s)
- Xiangji Cai
- School of Science, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
20
|
Gong Z, Wu J. Absorption matrix of multi-site systems calculated by a hybrid quantum-classical Liouville equation. J Chem Phys 2019; 151:224109. [DOI: 10.1063/1.5138217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhihao Gong
- Physics Department, Zhejiang University, 38 ZheDa Road, Hangzhou, Zhejiang 310027, China
| | - Jianlan Wu
- Physics Department, Zhejiang University, 38 ZheDa Road, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
21
|
Abstract
We theoretically investigate the dynamics of a quantum system which is coupled to a fluctuating environment based on the framework of Kubo-Anderson spectral diffusion. By employing the projection operator technique, we derive two types of dynamical equations, namely, time-convolution and time-convolutionless quantum master equations, respectively. We derive the exact quantum master equations of a qubit system with both diagonal splitting and tunneling coupling when the environmental noise is subject to a random telegraph process and a Ornstein-Uhlenbeck process, respectively. For the pure decoherence case with no tunneling coupling, the expressions of the decoherence factor we obtained are consistent with the well-known existing ones. The results are significant to quantum information processing and helpful for further understanding the quantum dynamics of open quantum systems.
Collapse
|
22
|
Iwamoto Y, Tanimura Y. Open quantum dynamics of a three-dimensional rotor calculated using a rotationally invariant system-bath Hamiltonian: Linear and two-dimensional rotational spectra. J Chem Phys 2019; 151:044105. [DOI: 10.1063/1.5108609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuki Iwamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
23
|
Chen L, Gelin MF, Domcke W. Orientational relaxation of a quantum linear rotor in a dissipative environment: Simulations with the hierarchical equations-of-motion method. J Chem Phys 2019; 151:034101. [PMID: 31325944 DOI: 10.1063/1.5105375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the effect of a dissipative environment on the orientational relaxation of a three-dimensional quantum linear rotor. We provide a derivation of the Hamiltonian of a linear rotor coupled to a harmonic bath from first principles, confirming earlier conjectures. The dynamics generated by this Hamiltonian is investigated by the hierarchical equations-of-motion method assuming a Drude spectral density of the bath. We perform numerically accurate simulations and analyze the behavior of orientational correlation functions and the rotational structures of infrared absorption and Raman scattering spectra. We explore the features of orientational correlation functions and their spectra for a wide range of system-bath couplings, bath memory times, and temperatures. We discuss the signatures of the orientational relaxation in the underdamped regime, the strongly damped regime, and the librational regime. We show that the behavior of orientational correlation functions and their spectra can conveniently be analyzed in terms of three characteristic times, which are explicitly expressed in terms of the parameters of the Hamiltonian.
Collapse
Affiliation(s)
- Lipeng Chen
- Department of Chemistry, Technische Universität München, D-85747, Garching, Germany
| | - Maxim F Gelin
- Department of Chemistry, Technische Universität München, D-85747, Garching, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, D-85747, Garching, Germany
| |
Collapse
|
24
|
Wang Q, Gong Z, Duan C, Tang Z, Wu J. Dynamical scaling in the Ohmic spin-boson model studied by extended hierarchical equations of motion. J Chem Phys 2019; 150:084114. [PMID: 30823766 DOI: 10.1063/1.5085871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Through a decomposition of the bath correlation function, the hierarchical equations of motion are extended to the Ohmic spin-boson model at zero temperature. For two typical cutoff functions of the bath spectral density, the rate kernel of spin dynamics is numerically extracted by a time-convolution equation of the average magnetic moment. A characteristic time is defined accordingly as the inverse of the zeroth-order moment of the rate kernel. For a given Kondo parameter in the incoherent regime, the time evolution of average magnetic moments gradually collapses onto a master curve after rescaling the time variable with the characteristic time. The rescaled spin dynamics is nearly independent of the cutoff frequency and the form of cutoff functions. For a given cutoff frequency, the characteristic time with the change of the Kondo parameter is fitted excellently as a function of the renormalized tunneling amplitude. Despite a significant difference in definition, our result is in good agreement with the characteristic time of the noninteracting blip approximation.
Collapse
Affiliation(s)
- Qianlong Wang
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhihao Gong
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chenru Duan
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhoufei Tang
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jianlan Wu
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
25
|
Yan YA. Stochastic simulation of anharmonic dissipation. II. Harmonic bath potentials with quadratic couplings. J Chem Phys 2019; 150:074106. [PMID: 30795680 DOI: 10.1063/1.5052527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The workhorse simulating the dissipative dynamics is mainly based on the harmonic bath potentials together with linear system-bath couplings, but a realistic bath always assumes anharmonicity. In this work, we extend the linear dissipation model to include quadratic couplings and suggest a stochastic simulation scheme for the anharmonic dissipation. We show that the non-Gaussian noises induced by the anharmonic bath can be rigorously constructed, and the resulting stochastic Liouville equation has the same form as that for the linear dissipation model. As a preliminary application, we use this stochastic method to investigate the vibration-induced symmetry breaking in two-level electronic systems and find that the characteristic function of the non-Gaussian noises determines the absorption and fluorescence spectra.
Collapse
Affiliation(s)
- Yun-An Yan
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, Shandong 264025, China
| |
Collapse
|
26
|
|
27
|
Cai X, Zheng Y. Non-Markovian decoherence dynamics in nonequilibrium environments. J Chem Phys 2018; 149:094107. [PMID: 30195316 DOI: 10.1063/1.5039891] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We theoretically investigate the non-Markovian dynamical decoherence of a quantum system coupled to nonequilibrium environments with nonstationary statistical properties. We show the time evolution of the decoherence factor in real-imaginary space to study the environment-induced energy renormalization and backaction of coherence which are associated with the unitary and nonunitary parts of the quantum master equation, respectively. It is also shown that the nonequilibrium decoherence dynamics displays a transition between Markovian and non-Markovian and the transition boundary depends on the environmental parameters. The results are helpful for further understanding non-Markovian dynamics and coherence backaction on an open quantum system from environments.
Collapse
Affiliation(s)
- Xiangji Cai
- School of Physics, Shandong University, Jinan 250100, China
| | - Yujun Zheng
- School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
28
|
Erpenbeck A, Hertlein C, Schinabeck C, Thoss M. Extending the hierarchical quantum master equation approach to low temperatures and realistic band structures. J Chem Phys 2018; 149:064106. [PMID: 30111120 DOI: 10.1063/1.5041716] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hierarchical quantum master equation (HQME) approach is an accurate method to describe quantum transport in interacting nanosystems. It generalizes perturbative master equation approaches by including higher-order contributions as well as non-Markovian memory and allows for the systematic convergence to the numerically exact result. As the HQME method relies on a decomposition of the bath correlation function in terms of exponentials, however, its application to systems at low temperatures coupled to baths with complexer band structures has been a challenge. In this publication, we outline an extension of the HQME approach, which uses re-summation over poles and can be applied to calculate transient currents at a numerical cost that is independent of temperature and band structure of the baths. We demonstrate the performance of the extended HQME approach for noninteracting tight-binding model systems of increasing complexity as well as for the spinless Anderson-Holstein model.
Collapse
Affiliation(s)
- A Erpenbeck
- Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| | - C Hertlein
- Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| | - C Schinabeck
- Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| | - M Thoss
- Institute for Theoretical Physics and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7/B2, D-91058 Erlangen, Germany
| |
Collapse
|
29
|
Xu RX, Tao XC, Wang Y, Liu Y, Zhang HD, Yan Y. A hierarchical-equation-of-motion based semiclassical approach to quantum dissipation. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1807172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Rui-xue Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Xue-cheng Tao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Yang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - Hou-dao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
30
|
Gong ZH, Tang ZF, Cao JS, Wu J. Optimal initialization of a quantum system for an efficient coherent energy transfer. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1804068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Zhi-hao Gong
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zhou-fei Tang
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Jian-shu Cao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jianlan Wu
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
31
|
Gong Z, Wu J. Quantum kinetic expansion in the spin-boson model: Implemented by the quantum-classical Liouville equation in an anharmonic bath. J Chem Phys 2018; 148:234107. [DOI: 10.1063/1.5028306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Zhihao Gong
- Physics Department, Zhejiang University, 38 ZheDa Road, Hangzhou, Zhejiang 310027, China
| | - Jianlan Wu
- Physics Department, Zhejiang University, 38 ZheDa Road, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
32
|
Xu RX, Liu Y, Zhang HD, Yan Y. Theories of quantum dissipation and nonlinear coupling bath descriptors. J Chem Phys 2018; 148:114103. [PMID: 29566509 DOI: 10.1063/1.4991779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The quest of an exact and nonperturbative treatment of quantum dissipation in nonlinear coupling environments remains in general an intractable task. In this work, we address the key issues toward the solutions to the lowest nonlinear environment, a harmonic bath coupled both linearly and quadratically with an arbitrary system. To determine the bath coupling descriptors, we propose a physical mapping scheme, together with the prescription reference invariance requirement. We then adopt a recently developed dissipaton equation of motion theory [R. X. Xu et al., Chin. J. Chem. Phys. 30, 395 (2017)], with the underlying statistical quasi-particle ("dissipaton") algebra being extended to the quadratic bath coupling. We report the numerical results on a two-level system dynamics and absorption and emission line shapes.
Collapse
Affiliation(s)
- Rui-Xue Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hou-Dao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and Synergetic Innovation Center of Quantum Information and Quantum Physics and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
33
|
Hsieh CY, Cao J. A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations. J Chem Phys 2018; 148:014103. [PMID: 29306296 DOI: 10.1063/1.5018725] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.
Collapse
Affiliation(s)
- Chang-Yu Hsieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
34
|
Xu M, Yan Y, Liu Y, Shi Q. Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model. J Chem Phys 2018; 148:164101. [DOI: 10.1063/1.5022761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Meng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanying Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|