1
|
Frohoff-Hülsmann T, Holl MP, Knobloch E, Gurevich SV, Thiele U. Stationary broken parity states in active matter models. Phys Rev E 2023; 107:064210. [PMID: 37464596 DOI: 10.1103/physreve.107.064210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 05/15/2023] [Indexed: 07/20/2023]
Abstract
We demonstrate that several nonvariational continuum models commonly used to describe active matter as well as other active systems exhibit nongeneric behavior: each model supports asymmetric but stationary localized states even in the absence of pinning at heterogeneities. Moreover, such states only begin to drift following a drift-transcritical bifurcation as the activity increases. Asymmetric stationary states should only exist in variational systems, i.e., in models with gradient structure. In other words, such states are expected in passive systems, but not in active systems where the gradient structure of the model is broken by activity. We identify a "spurious" gradient dynamics structure of these models that is responsible for this nongeneric behavior, and determine the types of additional terms that render the models generic, i.e., with asymmetric states that appear via drift-pitchfork bifurcations and are generically moving. We provide detailed illustrations of our results using numerical continuation of resting and steadily drifting states in both generic and nongeneric cases.
Collapse
Affiliation(s)
- Tobias Frohoff-Hülsmann
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
| | - Max Philipp Holl
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
| | - Edgar Knobloch
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
| | - Svetlana V Gurevich
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstrasse 2, 48149 Münster, Germany
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstrasse 2, 48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
2
|
Light-Induced Ring Pattern in a Dye-Doped Nematic Liquid Crystal. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of dye-doped liquid crystals allows the amplification of the coupling of light and liquid crystals. Light can induce the self-organization of the molecular order. The appearance of ring patterns has been observed, which has been associated with phase modulation. However, the morphology and dynamics of the ring patterns are not consistent with self-modulation. Based on an experimental setup with two parallel coherence beams orthogonal to a liquid crystal cell, one of which induces photo-isomerization and the other causes illumination, the formation of ring patterns is studied. To use these two coherent beams, we synthesize methylred methyl ester as a dye-dopant, which is photosensitive only to one of the light beams, and a commercial E7 liquid crystal as a matrix. Based on a mathematical model that accounts for the coupling between the concentration of the cis-state and the order parameter, we elucidate the emergence of the rings as forming patterns in an inhomogeneous medium. The bifurcation diagram is analytically characterized. The emergence, propagation of the rings, and the establishment of the ring patterns are in fair agreement with the experimental observations.
Collapse
|
3
|
Dolinina D, Yulin A. Dissipative switching waves and solitons in the systems with spontaneously broken symmetry. Phys Rev E 2021; 103:052207. [PMID: 34134290 DOI: 10.1103/physreve.103.052207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/15/2021] [Indexed: 11/07/2022]
Abstract
The paper addresses the bistability caused by spontaneous symmetry breaking bifurcation in a one-dimensional periodically corrugated nonlinear waveguide pumped by coherent light at normal incidence. The formation and the stability of the switching waves connecting the states of different symmetries are studied numerically. It is shown that the switching waves can form stable resting and moving bound states (dissipative solitons). The protocols of the creation of the discussed nonlinear localized waves are suggested and verified by numerical simulations.
Collapse
Affiliation(s)
- D Dolinina
- Faculty of Physics, ITMO University, Saint-Petersburg 197101, Russia
| | - A Yulin
- Faculty of Physics, ITMO University, Saint-Petersburg 197101, Russia
| |
Collapse
|
4
|
Garbin B, Javaloyes J, Tissoni G, Barland S. Hopping and emergent dynamics of optical localized states in a trapping potential. CHAOS (WOODBURY, N.Y.) 2020; 30:093126. [PMID: 33003904 DOI: 10.1063/5.0006130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
The position and motion of localized states of light in propagative geometries can be controlled via an adequate parameter modulation. Here, we show theoretically and experimentally that this process can be accurately described as the phase locking of oscillators to an external forcing and that non-reciprocal interactions between light bits can drastically modify this picture. Interactions lead to the convective motion of defects and to an unlocking as a collective emerging phenomenon.
Collapse
Affiliation(s)
- B Garbin
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - J Javaloyes
- Departament de Física and IAC-3, Universitat de les Illes Balears, C/ Valldemossa km 7.5, 07122 Mallorca, Spain
| | - G Tissoni
- Institut de Physique de Nice, Université Côte d'Azur, CNRS, F-06560 Valbonne, France
| | - S Barland
- Institut de Physique de Nice, Université Côte d'Azur, CNRS, F-06560 Valbonne, France
| |
Collapse
|
5
|
Alvarez-Socorro AJ, Clerc MG, Ferré M, Knobloch E. Chaotic motion of localized structures. Phys Rev E 2020; 101:042212. [PMID: 32422835 DOI: 10.1103/physreve.101.042212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/23/2020] [Indexed: 11/07/2022]
Abstract
Mobility properties of spatially localized structures arising from chaotic but deterministic forcing of the bistable Swift-Hohenberg equation are studied and compared with the corresponding results when the chaotic forcing is replaced by white noise. Short structures are shown to possess greater mobility, resulting in larger root-mean-square speeds but shorter displacements than longer structures. Averaged over realizations, the displacement of the structure is ballistic at short times but diffusive at larger times. Similar results hold in two spatial dimensions. The effects of chaotic forcing on the stability of these structures is also quantified. Shorter structures are found to be more fragile than longer ones, and their stability region can be displaced outside the pinning region for constant forcing. Outside the stability region the deterministic fluctuations lead either to the destruction of the structure or to its gradual growth.
Collapse
Affiliation(s)
- A J Alvarez-Socorro
- Departamento de Física and Millennium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile.,Laboratorio de Investigación, Desarrollo e Innovación, Zenta Group, Diagonal Oriente 5081, Ñuñoa, Santiago, Chile
| | - Marcel G Clerc
- Departamento de Física and Millennium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile
| | - Michel Ferré
- Departamento de Física and Millennium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile
| | - Edgar Knobloch
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Three-dimensional solitary waves with electrically tunable direction of propagation in nematics. Nat Commun 2019; 10:3749. [PMID: 31434888 PMCID: PMC6704189 DOI: 10.1038/s41467-019-11768-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/30/2019] [Indexed: 11/08/2022] Open
Abstract
Production of stable multidimensional solitary waves is a grand challenge in modern science. Steering their propagation is an even harder problem. Here we demonstrate three-dimensional solitary waves in a nematic, trajectories of which can be steered by the electric field in a plane perpendicular to the field. The steering does not modify the properties of the background that remains uniform. These localized waves, called director bullets, are topologically unprotected multidimensional solitons of (3 + 2)D type that show fore-aft and right-left asymmetry with respect to the background molecular director; the symmetry is controlled by the field. Besides adding a whole dimension to the propagation direction and enabling controlled steering, the solitons can lead to applications such as targeted delivery of information and micro-cargo.
Collapse
|
7
|
Zykov VS. Spiral wave initiation in excitable media. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0385. [PMID: 30420544 DOI: 10.1098/rsta.2017.0385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2018] [Indexed: 05/20/2023]
Abstract
Spiral waves represent an important example of dissipative structures observed in many distributed systems in chemistry, biology and physics. By definition, excitable media occupy a stationary resting state in the absence of external perturbations. However, a perturbation exceeding a threshold results in the initiation of an excitation wave propagating through the medium. These waves, in contrast to acoustic and optical ones, disappear at the medium's boundary or after a mutual collision, and the medium returns to the resting state. Nevertheless, an initiation of a rotating spiral wave results in a self-sustained activity. Such activity unexpectedly appearing in cardiac or neuronal tissues usually destroys their dynamics which results in life-threatening diseases. In this context, an understanding of possible scenarios of spiral wave initiation is of great theoretical importance with many practical applications.This article is part of the theme issue 'Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)'.
Collapse
Affiliation(s)
- V S Zykov
- Max Planck Institute for Dynamics and Self-Organization, Goettingen, Germany
| |
Collapse
|