1
|
Aguilar MI, Yarovsky I. Quest for New Generation Biocompatible Materials: Tailoring β-Peptide Structure and Interactions via Synergy of Experiments and Modelling. J Mol Biol 2024; 436:168646. [PMID: 38848868 DOI: 10.1016/j.jmb.2024.168646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Peptide-based self-assembly has been used to produce a wide range of nanostructures. While most of these systems involve self-assembly of α-peptides, more recently β-peptides have also been shown to undergo supramolecular self-assembly, and have been used to produce materials for applications in tissue engineering, cell culture and drug delivery. In order to engineer new materials with specific structure and function, theoretical molecular modelling can provide significant insights into the collective balance of non-covalent interactions that drive the self-assembly and determine the structure of the resultant supramolecular materials under different conditions. However, this approach has only recently become feasible for peptide-based self-assembled nanomaterials, particularly those that incorporate non α-amino acids. This perspective provides an overview of the challenges associated with computational modelling of the self-assembly of β-peptides and the recent success using a combination of experimental and computational techniques to provide insights into the self-assembly mechanisms and fully atomistic models of these new biocompatible materials.
Collapse
Affiliation(s)
- Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
2
|
West NG, Bamford SE, Pigram PJ, Pan J, Qi DC, Mechler A. Controllable hierarchical self-assembly: systematic study forming metallosupramolecular frameworks on the basis of helical beta-oligoamides. MATERIALS HORIZONS 2023; 10:5584-5596. [PMID: 37815516 DOI: 10.1039/d3mh01327h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Self-assembly is a key guiding principle for the design of complex nanostructures. Substituted beta oligoamides offer versatile building blocks that can have inherent folding characteristics, offering geometrically defined functionalities that can specifically bind and assemble with predefined morphological characteristics. In this work hierarchical self-assembly is implemented based on metal coordinating helical beta-oligoamides crosslinked with transition metals selected for their favourable coordination geometries, Fe2+, Cu2+, Ni2+, Co2+, Zn2+, and two metalates, MoO42-, and WO42-. The oligoamide Ac-β3Aβ3Vβ3S-αHαHαH-β3Aβ3Vβ3A (3H) was designed to allow crosslinking via three distinct faces of the helical unit, with a possibility of forming three dimensional framework structures. Atomic force microscopy (AFM) confirmed the formation of specific morphologies that differ characteristically with each metal. X-Ray photoelectron spectroscopy (XPS) results reveal that the metal centres can be reduced in the final structures, confirming strong chemical interaction. Time of flight secondary ion mass spectrometry (ToF-SIMS) confirmed the spatial distribution of metals within the self-assembled networks, also revealing molecular fragments that confirm coordination to histidine and carboxyl moieties. The metalates MoO42- and WO42- were also able to induce the formation of specific superstructure morphologies. It was observed that assembly with either of nickel, copper, and molybdate form thin films, while cobalt, zinc, and tungstate produced specific three dimensional networks of oligoamides. Iron was found to form both a thin film and a complex hierarchical assembly with the 3H simultaneously. The design of the 3H substituted beta oligoamide to readily form metallosupramolecular frameworks was demonstrated with a range of metals and metalates with a degree of control over layer thicknesses as a function of the metal/metalate. The results validate and broaden the metallosupramolecular framework concept and establish a platform technology for the design of functional thin layer materials.
Collapse
Affiliation(s)
- Norton G West
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Sarah E Bamford
- Center for Materials and Surface Science, and Department of Mathematical and Physical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Paul J Pigram
- Center for Materials and Surface Science, and Department of Mathematical and Physical Sciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Jisheng Pan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Dong-Chen Qi
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
3
|
Chen YK, Simon IA, Maslov I, Oyarce-Pino IE, Kulkarni K, Hopper D, Aguilar MI, Vankadari N, Broughton BR, Del Borgo MP. A switch in N-terminal capping of β-peptides creates novel self-assembled nanoparticles. RSC Adv 2023; 13:29401-29407. [PMID: 37818265 PMCID: PMC10561372 DOI: 10.1039/d3ra04514e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
Small tripeptides composed entirely of β3-amino acids have been shown to self-assemble into fibres following acylation of the N-terminus. Given the use of Fmoc as a strategy to initiate self-assembly in α-peptides, we hypothesized that the acyl cap can be replaced by an Fmoc without perturbation to the self-assembly and enable simpler synthetic protocols. We therefore replaced the N-acyl cap for an Fmoc group and herein we show that these Fmoc-protected β3-peptides produce regular spherical particles, rather than fibrous structures, that are stable and capable of encapsulating cargo. We then demonstrated that these particles were able to deliver cargo to cells without any obvious signs of cytotoxicity. This is the first description of such regular nanoparticles derived from Fmoc-protected β3-peptides.
Collapse
Affiliation(s)
- Yi-Kai Chen
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Isabella A Simon
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Ivan Maslov
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Ivan E Oyarce-Pino
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Ketav Kulkarni
- Department of Biochemistry & Molecular Biology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Denham Hopper
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Melbourne VIC 3000 Australia
| | - Brad Rs Broughton
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
4
|
Sang P, Cai J. Unnatural helical peptidic foldamers as protein segment mimics. Chem Soc Rev 2023; 52:4843-4877. [PMID: 37401344 PMCID: PMC10389297 DOI: 10.1039/d2cs00395c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 07/05/2023]
Abstract
Unnatural helical peptidic foldamers have attracted considerable attention owing to their unique folding behaviours, diverse artificial protein binding mechanisms, and promising applications in chemical, biological, medical, and material fields. Unlike the conventional α-helix consisting of molecular entities of native α-amino acids, unnatural helical peptidic foldamers are generally comprised of well-defined backbone conformers with unique and unnatural structural parameters. Their folded structures usually arise from unnatural amino acids such as N-substituted glycine, N-substituted-β-alanine, β-amino acid, urea, thiourea, α-aminoxy acid, α-aminoisobutyric acid, aza-amino acid, aromatic amide, γ-amino acid, as well as sulfono-γ-AA amino acid. They can exhibit intriguing and predictable three-dimensional helical structures, generally featuring superior resistance to proteolytic degradation, enhanced bioavailability, and improved chemodiversity, and are promising in mimicking helical segments of various proteins. Although it is impossible to include every piece of research work, we attempt to highlight the research progress in the past 10 years in exploring unnatural peptidic foldamers as protein helical segment mimics, by giving some representative examples and discussing the current challenges and future perspectives. We expect that this review will help elucidate the principles of structural design and applications of existing unnatural helical peptidic foldamers in protein segment mimicry, thereby attracting more researchers to explore and generate novel unnatural peptidic foldamers with unique structural and functional properties, leading to more unprecedented and practical applications.
Collapse
Affiliation(s)
- Peng Sang
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
5
|
Misra R, Rudnick-Glick S, Adler-Abramovich L. From Folding to Assembly: Functional Supramolecular Architectures of Peptides Comprised of Non-Canonical Amino Acids. Macromol Biosci 2021; 21:e2100090. [PMID: 34142442 DOI: 10.1002/mabi.202100090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/06/2021] [Indexed: 12/27/2022]
Abstract
The engineering of biological molecules is the fundamental concept behind the design of complex materials with desirable functions. Over the last few decades, peptides and proteins have emerged as useful building blocks for well-defined nanostructures with controlled size and dimensions. Short peptides in particular have received much attention due to their inherent biocompatibility, lower synthetic cost, and ease of tunability. In addition to the diverse self-assembling properties of short peptides comprising coded amino acids and their emerging applications in nanotechnology, there is now growing interest in the properties of peptides composed of non-canonical amino acids. Such non-natural oligomers have been shown in recent years to form well-defined secondary structures similar to natural proteins, with the ability to self-assemble to generate a wide variety of nanostructures with excellent biostability. This review describes recent events in the development of supramolecular assemblies of peptides composed completely of non-coded amino acids and their hybrid analogues. Special attention is paid to understanding the supramolecular assemblies at the atomic level and to considering their potential applications in nanotechnology.
Collapse
Affiliation(s)
- Rajkumar Misra
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine and the Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Safra Rudnick-Glick
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine and the Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine and the Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
6
|
Payne JAE, Kulkarni K, Izore T, Fulcher AJ, Peleg AY, Aguilar MI, Cryle MJ, Del Borgo MP. Staphylococcus aureus entanglement in self-assembling β-peptide nanofibres decorated with vancomycin. NANOSCALE ADVANCES 2021; 3:2607-2616. [PMID: 36134162 PMCID: PMC9419598 DOI: 10.1039/d0na01018a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/23/2021] [Indexed: 06/16/2023]
Abstract
The increasing resistance of pathogenic microbes to antimicrobials and the shortage of antibiotic drug discovery programs threaten the clinical use of antibiotics. This threat calls for the development of new methods for control of drug-resistant microbial pathogens. We have designed, synthesised and characterised an antimicrobial material formed via the self-assembly of a population of two distinct β-peptide monomers, a lipidated tri-β-peptide (β3-peptide) and a novel β3-peptide conjugated to a glycopeptide antibiotic, vancomycin. The combination of these two building blocks resulted in fibrous assemblies with distinctive structures determined by atomic force microscopy and electron microscopy. These fibres inhibited the growth of methicillin resistant Staphylococcus aureus (MRSA) and associated directly with the bacteria, acting as a peptide nanonet with fibre nucleation sites on the bacteria observed by electron microscopy and confocal microscopy. Our results provide insights into the design of peptide based supramolecular assemblies with antibacterial activity and establish an innovative strategy to develop self-assembled antimicrobial materials for future biomedical application.
Collapse
Affiliation(s)
- Jennifer A E Payne
- Infection and Immunity Program, The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
- The ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University Clayton Victoria 3800 Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
| | - Thierry Izore
- Infection and Immunity Program, The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University Clayton Victoria 3800 Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University Clayton Victoria 3800 Australia
- Department of Infectious Diseases, The Alfred Hospital, Central Clinical School, Monash University Melbourne Victoria 3004 Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
| | - Max J Cryle
- Infection and Immunity Program, The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
- The ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University Clayton Victoria 3800 Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
7
|
Rinaldi S. The Diverse World of Foldamers: Endless Possibilities of Self-Assembly. Molecules 2020; 25:E3276. [PMID: 32708440 PMCID: PMC7397133 DOI: 10.3390/molecules25143276] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described.
Collapse
Affiliation(s)
- Samuele Rinaldi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
8
|
Szigyártó IC, Mihály J, Wacha A, Bogdán D, Juhász T, Kohut G, Schlosser G, Zsila F, Urlacher V, Varga Z, Fülöp F, Bóta A, Mándity I, Beke-Somfai T. Membrane active Janus-oligomers of β 3-peptides. Chem Sci 2020; 11:6868-6881. [PMID: 33042513 PMCID: PMC7504880 DOI: 10.1039/d0sc01344g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022] Open
Abstract
Self-assembly of an acyclic β3-hexapeptide with alternating side chain chirality, into nanometer size oligomeric bundles showing membrane activity and hosting capacity for hydrophobic small molecules.
Self-assembling peptides offer a versatile set of tools for bottom-up construction of supramolecular biomaterials. Among these compounds, non-natural peptidic foldamers experience increased focus due to their structural variability and lower sensitivity to enzymatic degradation. However, very little is known about their membrane properties and complex oligomeric assemblies – key areas for biomedical and technological applications. Here we designed short, acyclic β3-peptide sequences with alternating amino acid stereoisomers to obtain non-helical molecules having hydrophilic charged residues on one side, and hydrophobic residues on the other side, with the N-terminus preventing formation of infinite fibrils. Our results indicate that these β-peptides form small oligomers both in water and in lipid bilayers and are stabilized by intermolecular hydrogen bonds. In the presence of model membranes, they either prefer the headgroup regions or they insert between the lipid chains. Molecular dynamics (MD) simulations suggest the formation of two-layered bundles with their side chains facing opposite directions when compared in water and in model membranes. Analysis of the MD calculations showed hydrogen bonds inside each layer, however, not between the layers, indicating a dynamic assembly. Moreover, the aqueous form of these oligomers can host fluorescent probes as well as a hydrophobic molecule similarly to e.g. lipid transfer proteins. For the tested, peptides the mixed chirality pattern resulted in similar assemblies despite sequential differences. Based on this, it is hoped that the presented molecular framework will inspire similar oligomers with diverse functionality.
Collapse
Affiliation(s)
- Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - András Wacha
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Dóra Bogdán
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Organic Chemistry , Faculty of Pharmacy , Semmelweis University , H-1092 Budapest , Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Gergely Kohut
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Institute of Chemistry , Eötvös Loránd University , H-1117 Budapest , Hungary
| | - Gitta Schlosser
- Institute of Chemistry , Eötvös Loránd University , H-1117 Budapest , Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Vlada Urlacher
- Institute of Biochemistry , Heinrich-Heine University , 40225 Düsseldorf , Germany
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Ferenc Fülöp
- MTA-SZTE Stereochemistry Research Group , Institute of Pharmaceutical Chemistry , University of Szeged , H-6720 Szeged , Hungary
| | - Attila Bóta
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - István Mándity
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Organic Chemistry , Faculty of Pharmacy , Semmelweis University , H-1092 Budapest , Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Chemistry and Chemical Engineering , Physical Chemistry , Chalmers University of Technology , SE-41296 Göteborg , Sweden
| |
Collapse
|
9
|
Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020; 8:504. [PMID: 32548101 PMCID: PMC7273840 DOI: 10.3389/fbioe.2020.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
The translational therapies to promote interaction between cell and signal come with stringent eligibility criteria. The chemically defined, hierarchically organized, and simpler yet blessed with robust intermolecular association, the peptides, are privileged to make the cut-off for sensing the cell-signal for biologics delivery and tissue engineering. The signature service and insoluble network formation of the peptide self-assemblies as hydrogels have drawn a spell of research activity among the scientists all around the globe in the past decades. The therapeutic peptide market players are anticipating promising growth opportunities due to the ample technological advancements in this field. The presence of the other organic moieties, enzyme substrates and well-established protecting groups like Fmoc and Boc etc., bring the best of both worlds. Since the large sequences of peptides severely limit the purification and their isolation, this article reviews the account of last 5 years' efforts on novel approaches for formulation and development of single molecule amino acids, ultra-short peptide self-assemblies (di- and tri- peptides only) and their derivatives as drug/gene carriers and tissue-engineering systems.
Collapse
Affiliation(s)
- Seema Gupta
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Indu Singh
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashwani K. Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
10
|
Habila N, Kulkarni K, Lee TH, Al-Garawi ZS, Serpell LC, Aguilar MI, Del Borgo MP. Transition of Nano-Architectures Through Self-Assembly of Lipidated β 3-Tripeptide Foldamers. Front Chem 2020; 8:217. [PMID: 32296680 PMCID: PMC7136582 DOI: 10.3389/fchem.2020.00217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
β3-peptides consisting exclusively of β3-amino acids adopt a variety of non-natural helical structures and can self-assemble into well-defined hierarchical structures by axial head-to-tail self-assembly resulting in fibrous materials of varying sizes and shapes. To allow control of fiber morphology, a lipid moiety was introduced within a tri-β3-peptide sequence at each of the three amino acid positions and the N-terminus to gain finer control over the lateral assembly of fibers. Depending on the position of the lipid, the self-assembled structures formed either twisted ribbon-like fibers or distinctive multilaminar nanobelts. The nanobelt structures were comprised of multiple layers of peptide fibrils as revealed by puncturing the surface of the nanobelts with an AFM probe. This stacking phenomenon was completely inhibited through changes in pH, indicating that the layer stacking was mediated by electrostatic interactions. Thus, the present study is the first to show controlled self-assembly of these fibrous structures, which is governed by the location of the acyl chain in combination with the 3-point H-bonding motif. Overall, the results demonstrate that the nanostructures formed by the β3-tripeptide foldamers can be tuned via sequential lipidation of N-acetyl β3-tripeptides which control the lateral interactions between peptide fibrils and provide defined structures with a greater homogeneous population.
Collapse
Affiliation(s)
- Nathan Habila
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Zahraa S Al-Garawi
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Chemistry Department, Mustansiriyah University, Baghdad, Iraq
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
11
|
Buchanan C, Garvey CJ, Puskar L, Perlmutter P, Mechler A. Coordination crosslinking of helical substituted oligoamide nanorods with Cu(II). Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1730839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Claire Buchanan
- Department of Chemistry and Physics, La Trobe University, Bundoora, Australia
| | - Christopher J Garvey
- Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, Australia
- Lund Institute for Advanced Neutron and X-ray Science (LINXS), Lund, Sweden
- Biofilms Research Center for Biointerfaces, Department of Biomedical Science, Health and Society, Malmö University, Malmö, Sweden
| | - Ljiljana Puskar
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Patrick Perlmutter
- Department of Chemistry and Physics, La Trobe University, Bundoora, Australia
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Bundoora, Australia
| |
Collapse
|
12
|
Reese HR, Shanahan CC, Proulx C, Menegatti S. Peptide science: A "rule model" for new generations of peptidomimetics. Acta Biomater 2020; 102:35-74. [PMID: 31698048 DOI: 10.1016/j.actbio.2019.10.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Peptides have been heavily investigated for their biocompatible and bioactive properties. Though a wide array of functionalities can be introduced by varying the amino acid sequence or by structural constraints, properties such as proteolytic stability, catalytic activity, and phase behavior in solution are difficult or impossible to impart upon naturally occurring α-L-peptides. To this end, sequence-controlled peptidomimetics exhibit new folds, morphologies, and chemical modifications that create new structures and functions. The study of these new classes of polymers, especially α-peptoids, has been highly influenced by the analysis, computational, and design techniques developed for peptides. This review examines techniques to determine primary, secondary, and tertiary structure of peptides, and how they have been adapted to investigate peptoid structure. Computational models developed for peptides have been modified to predict the morphologies of peptoids and have increased in accuracy in recent years. The combination of in vitro and in silico techniques have led to secondary and tertiary structure design principles that mirror those for peptides. We then examine several important developments in peptoid applications inspired by peptides such as pharmaceuticals, catalysis, and protein-binding. A brief survey of alternative backbone structures and research investigating these peptidomimetics shows how the advancement of peptide and peptoid science has influenced the growth of numerous fields of study. As peptide, peptoid, and other peptidomimetic studies continue to advance, we will expect to see higher throughput structural analyses, greater computational accuracy and functionality, and wider application space that can improve human health, solve environmental challenges, and meet industrial needs. STATEMENT OF SIGNIFICANCE: Many historical, chemical, and functional relations draw a thread connecting peptides to their recent cognates, the "peptidomimetics". This review presents a comprehensive survey of this field by highlighting the width and relevance of these familial connections. In the first section, we examine the experimental and computational techniques originally developed for peptides and their morphing into a broader analytical and predictive toolbox. The second section presents an excursus of the structures and properties of prominent peptidomimetics, and how the expansion of the chemical and structural diversity has returned new exciting properties. The third section presents an overview of technological applications and new families of peptidomimetics. As the field grows, new compounds emerge with clear potential in medicine and advanced manufacturing.
Collapse
|
13
|
John-White M, Gardiner J, Johanesen P, Lyras D, Dumsday G. β-Aminopeptidases: Insight into Enzymes without a Known Natural Substrate. Appl Environ Microbiol 2019; 85:e00318-19. [PMID: 31126950 PMCID: PMC6643246 DOI: 10.1128/aem.00318-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 02/05/2023] Open
Abstract
β-Aminopeptidases have the unique capability to hydrolyze N-terminal β-amino acids, with varied preferences for the nature of β-amino acid side chains. This unique capability makes them useful as biocatalysts for synthesis of β-peptides and to kinetically resolve β-peptides and amides for the production of enantiopure β-amino acids. To date, six β-aminopeptidases have been discovered and functionally characterized, five from Gram-negative bacteria and one from a fungus, Aspergillus Here we report on the purification and characterization of an additional four β-aminopeptidases, one from a Gram-positive bacterium, Mycolicibacterium smegmatis (BapAMs), one from a yeast, Yarrowia lipolytica (BapAYlip), and two from Gram-negative bacteria isolated from activated sludge identified as Burkholderia spp. (BapABcA5 and BapABcC1). The genes encoding β-aminopeptidases were cloned, expressed in Escherichia coli, and purified. The β-aminopeptidases were produced as inactive preproteins that underwent self-cleavage to form active enzymes comprised of two different subunits. The subunits, designated α and β, appeared to be tightly associated, as the active enzyme was recovered after immobilized-metal affinity chromatography (IMAC) purification, even though only the α-subunit was 6-histidine tagged. The enzymes were shown to hydrolyze chromogenic substrates with the N-terminal l-configurations β-homo-Gly (βhGly) and β3-homo-Leu (β3hLeu) with high activities. These enzymes displayed higher activity with H-βhGly-p-nitroanilide (H-βhGly-pNA) than previously characterized enzymes from other microorganisms. These data indicate that the new β-aminopeptidases are fully functional, adding to the toolbox of enzymes that could be used to produce β-peptides. Overexpression studies in Pseudomonas aeruginosa also showed that the β-aminopeptidases may play a role in some cellular functions.IMPORTANCE β-Aminopeptidases are unique enzymes found in a diverse range of microorganisms that can utilize synthetic β-peptides as a sole carbon source. Six β-aminopeptidases have been previously characterized with preferences for different β-amino acid substrates and have demonstrated the capability to catalyze not only the degradation of synthetic β-peptides but also the synthesis of short β-peptides. Identification of other β-aminopeptidases adds to this toolbox of enzymes with differing β-amino acid substrate preferences and kinetics. These enzymes have the potential to be utilized in the sustainable manufacture of β-amino acid derivatives and β-peptides for use in biomedical and biomaterial applications. This is important, because β-amino acids and β-peptides confer increased proteolytic resistance to bioactive compounds and form novel structures as well as structures similar to α-peptides. The discovery of new enzymes will also provide insight into the biological importance of these enzymes in nature.
Collapse
Affiliation(s)
- Marietta John-White
- CSIRO Manufacturing, Clayton, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | - Priscilla Johanesen
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
14
|
Kulkarni K, Habila N, Del Borgo MP, Aguilar MI. Novel Materials From the Supramolecular Self-Assembly of Short Helical β 3-Peptide Foldamers. Front Chem 2019; 7:70. [PMID: 30828574 PMCID: PMC6384263 DOI: 10.3389/fchem.2019.00070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
Self-assembly is the spontaneous organization of small components into higher-order structures facilitated by the collective balance of non-covalent interactions. Peptide-based self-assembly systems exploit the ability of peptides to adopt distinct secondary structures and have been used to produce a range of well-defined nanostructures, such as nanotubes, nanofibres, nanoribbons, nanospheres, nanotapes, and nanorods. While most of these systems involve self-assembly of α-peptides, more recently β-peptides have also been reported to undergo supramolecular self-assembly, and have been used to produce materials-such as hydrogels-that are tailored for applications in tissue engineering, cell culture and drug delivery. This review provides an overview of self-assembled peptide nanostructures obtained via the supramolecular self-assembly of short β-peptide foldamers with a specific focus on N-acetyl-β3-peptides and their applications as bio- and nanomaterials.
Collapse
Affiliation(s)
| | | | - Mark P. Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash Univdersity, Melbourne, VIC, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash Univdersity, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Hong A, Aguilar MI, Del Borgo MP, Sobey CG, Broughton BRS, Forsythe JS. Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke. J Mater Chem B 2019. [DOI: 10.1039/c9tb00257j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ischaemic stroke remains one of the leading causes of death and disability worldwide, without any long-term effective treatments targeted at regeneration. This has led to developments of novel, biomaterial-based strategies using self-assembling peptide hydrogels.
Collapse
Affiliation(s)
- Andrew Hong
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology
- Monash Biomedicine Discovery Institute
- Monash University
- Clayton
- Australia
| | - Mark P. Del Borgo
- Department of Biochemistry & Molecular Biology
- Monash Biomedicine Discovery Institute
- Monash University
- Clayton
- Australia
| | - Christopher G. Sobey
- Vascular Biology and Immunopharmacology Group
- Department of Physiology
- Anatomy and Microbiology
- La Trobe University
- Bundoora
| | - Brad R. S. Broughton
- Cardiovascular & Pulmonary Pharmacology Group
- Biomedicine Discovery Institute and Department of Pharmacology
- Monash University
- Clayton
- Australia
| | - John S. Forsythe
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| |
Collapse
|
16
|
Christofferson AJ, Al-Garawi ZS, Todorova N, Turner J, Del Borgo MP, Serpell LC, Aguilar MI, Yarovsky I. Identifying the Coiled-Coil Triple Helix Structure of β-Peptide Nanofibers at Atomic Resolution. ACS NANO 2018; 12:9101-9109. [PMID: 30157375 DOI: 10.1021/acsnano.8b03131] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peptide self-assembly represents a powerful bottom-up approach to the fabrication of nanomaterials. β3-Peptides are non-natural peptides composed entirely of β-amino acids, which have an extra methylene in the backbone, and we reported fibers derived from the self-assembly of β3-peptides that adopt 14-helical structures. β3-Peptide assemblies represent a class of stable nanomaterials that can be used to generate bio- and magneto-responsive materials with proteolytic stability. However, the three-dimensional structure of many of these materials remains unknown. To develop structure-based criteria for the design of β3-peptide-based biomaterials with tailored function, we investigated the structure of a tri-β3-peptide nanoassembly by molecular dynamics simulations and X-ray fiber diffraction analysis. Diffraction data was collected from aligned fibrils formed by Ac-β3[LIA] in water and used to inform and validate the model structure. Models with 3-fold radial symmetry resulted in stable fibers with a triple-helical coiled-coil motif and measurable helical pitch and periodicity. The fiber models revealed a hydrophobic core and twist along the fiber axis arising from a maximization of contacts between hydrophobic groups of adjacent tripeptides on the solvent-exposed fiber surface. These atomic structures of macroscale fibers derived from β3-peptide-based materials provide valuable insight into the effects of the geometric placement of the side chains and the influence of solvent on the core fiber structure which is perpetuated in the superstructure morphology.
Collapse
Affiliation(s)
| | - Zahraa S Al-Garawi
- School of Life Sciences , University of Sussex , Falmer , East Sussex BN1 9QG , U.K
- Chemistry Department , Mustansiriyah University , Baghdad Iraq
| | - Nevena Todorova
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Jack Turner
- School of Life Sciences , University of Sussex , Falmer , East Sussex BN1 9QG , U.K
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Melbourne , Victoria 3800 , Australia
| | - Louise C Serpell
- School of Life Sciences , University of Sussex , Falmer , East Sussex BN1 9QG , U.K
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute , Monash University , Melbourne , Victoria 3800 , Australia
| | - Irene Yarovsky
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| |
Collapse
|
17
|
Aye SSS, Li R, Boyd-Moss M, Long B, Pavuluri S, Bruggeman K, Wang Y, Barrow CR, Nisbet DR, Williams RJ. Scaffolds Formed via the Non-Equilibrium Supramolecular Assembly of the Synergistic ECM Peptides RGD and PHSRN Demonstrate Improved Cell Attachment in 3D. Polymers (Basel) 2018; 10:E690. [PMID: 30960615 PMCID: PMC6404015 DOI: 10.3390/polym10070690] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 01/15/2023] Open
Abstract
Self-assembling peptides (SAPs) are a relatively new class of low molecular weight gelators which immobilize their solvent through the spontaneous formation of (fibrillar) nanoarchitectures. As peptides are derived from proteins, these hydrogels are ideal for use as biocompatible scaffolds for regenerative medicine. Importantly, due to the propensity of peptide sequences to act as signals in nature, they are easily functionalized to be cell instructive via the inclusion of bioactive epitopes. In nature, the fibronectin peptide sequence, arginine-glycine-aspartic acid (RGD) synergistically promotes the integrin α₅β₁ mediated cell adhesion with another epitope, proline-histidine-serine-arginine-asparagine (PHSRN); however most functionalization strategies focus on RGD alone. Here, for the first time, we discuss the biomimetic inclusion of both these sequences within a self-assembled minimalistic peptide hydrogel. Here, based on our work with Fmoc-FRGDF (N-flourenylmethyloxycarbonyl phenylalanine-arginine-glycine-aspartic acid-phenylalanine), we show it is possible to present two epitopes simultaneously via the assembly of the epitopes by the coassembly of two SAPs, and compare this to the effectiveness of the signals in a single peptide; Fmoc-FRGDF: Fmoc-PHSRN (N-flourenylmethyloxycarbonyl-proline-histidine-serine-arginine-asparagine) and Fmoc-FRGDFPHSRN (N-flourenylmethyloxycarbonyl-phenylalanine-arginine-glycine-asparticacid-phenylalanine-proline-histidine-serine-arginine-asparagine). We show both produced self-supporting hydrogel underpinned by entangled nanofibrils, however, the stiffness of coassembled hydrogel was over two orders of magnitude higher than either Fmoc-FRGDF or Fmoc-FRGDFPHSRN alone. In-vitro three-dimensional cell culture of human mammary fibroblasts on the hydrogel mixed peptide showed dramatically improved adhesion, spreading and proliferation over Fmoc-FRGDF. However, the long peptide did not provide effective cell attachment. The results demonstrated the selective synergy effect of PHSRN with RGD is an effective way to augment the robustness and functionality of self-assembled bioscaffolds.
Collapse
Affiliation(s)
- San-Seint S Aye
- Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217, Australia.
| | - Rui Li
- Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217, Australia.
| | - Mitchell Boyd-Moss
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia.
- Biofab3D, St. Vincents' Hospital, Fitzroy, VIC 3000, Australia.
| | - Benjamin Long
- Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217, Australia.
- Faculty of Science and Technology, Federation University, Mt. Helen, VIC 3350, Australia.
| | - Sivapriya Pavuluri
- School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia.
| | - Kiara Bruggeman
- Research School of Engineering, Australian National University, Canberra, ACT 0200, Australia.
| | - Yi Wang
- Research School of Engineering, Australian National University, Canberra, ACT 0200, Australia.
| | - Colin R Barrow
- Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217, Australia.
| | - David R Nisbet
- Biofab3D, St. Vincents' Hospital, Fitzroy, VIC 3000, Australia.
- Research School of Engineering, Australian National University, Canberra, ACT 0200, Australia.
| | - Richard J Williams
- School of Engineering, RMIT University, Bundoora, VIC 3083, Australia.
- Biofab3D, St. Vincents' Hospital, Fitzroy, VIC 3000, Australia.
| |
Collapse
|