1
|
Li J, Vindel-Zandbergen P, Li J, Felker PM, Bačić Z. HF Trimer: A New Full-Dimensional Potential Energy Surface and Rigorous 12D Quantum Calculations of Vibrational States. J Phys Chem A 2024; 128:9707-9720. [PMID: 39484697 DOI: 10.1021/acs.jpca.4c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
HF trimer, as the smallest and the lightest cyclic hydrogen-bonded (HB) cluster, has long been a favorite prototype system for spectroscopic and theoretical investigations of the structure, energetics, spectroscopy, and dynamics of hydrogen-bond networks. Recently, rigorous quantum 12D calculations of the coupled intra- and intermolecular vibrations of this fundamental HB trimer (J. Chem. Phys. 2023, 158, 234109) were performed, employing an older ab initio-based many-body potential energy surface (PES). While the theoretical results were found to be in reasonably good agreement with the available spectroscopic data, it was also evident that it is highly desirable to develop a more accurate 12D PES of HF trimer. Motivated by this, here we report a new, and the first fully ab initio 12D PES of this paradigmatic system. Approximately 42,540 geometries were sampled and calculated at the level of CCSD(T)-F12a/AVTZ. The permutationally invariant polynomial-neural network based Δ-machine learning approach (J. Phys. Chem. Lett. 2022, 13, 4729) was employed to perform cost-efficient calculations of the basis-set-superposition error (BSSE) correction. By strategically selecting data points, this approach facilitated the construction of a high-precision PES with BSSE correction, while requiring only a minimal number of BSSE value computations. The fitting error of the final PES is only 0.035 kcal/mol. To assess its performance, the 12D fully coupled quantum calculations of excited intra- and intermolecular vibrational states of HF trimer are carried out using the rigorous methodology developed by us earlier. The results are found to be in a significantly better agreement with the available spectroscopic data than those obtained with the previously existing semiempirical 12D PES.
Collapse
Affiliation(s)
- Jia Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Patricia Vindel-Zandbergen
- Department of Chemistry, New York University, New York, New York 10003, United States
- Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Peter M Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, United States
- Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
2
|
Sunaga A, Avila G, Mátyus E. Variational Vibrational States of Methanol (12D). J Chem Theory Comput 2024. [PMID: 39213609 DOI: 10.1021/acs.jctc.4c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Full-dimensional (12D) vibrational states of the methanol molecule (CH3OH) have been computed using the GENIUSH-Smolyak approach and the potential energy surface from Qu and Bowman (2013). All vibrational energies are converged better than 0.5 cm-1 with respect to the basis and grid size up to the first overtone of the CO stretch, ca. 2000 cm-1 beyond the zero-point vibrational energy. About 70 torsion-vibration states are reported and assigned. The computed vibrational energies agree with the available experimental data within less than a few cm-1 in most cases, which confirms the good accuracy of the potential energy surface. The computations are carried out using curvilinear normal coordinates with the option of path-following coefficients, which minimize the coupling of the small- and large-amplitude motions. It is important to ensure tight numerical fulfillment of the C3v(M) molecular symmetry for every geometry and coefficient set used to define the curvilinear normal coordinates along the torsional coordinate to obtain a faithful description of degeneracy in this floppy system. The reported values may provide a computational reference for fundamental spectroscopy, astrochemistry, and for the search of the proton-to-electron mass ratio variation using the methanol molecule.
Collapse
Affiliation(s)
- Ayaki Sunaga
- ELTE, Eötvös Loránd University, Institute of Chemistry, Budapest 1117, Hungary
| | - Gustavo Avila
- ELTE, Eötvös Loránd University, Institute of Chemistry, Budapest 1117, Hungary
| | - Edit Mátyus
- ELTE, Eötvös Loránd University, Institute of Chemistry, Budapest 1117, Hungary
| |
Collapse
|
3
|
Barclay AJ, McKellar ARW, Moazzen-Ahmadi N. Infrared spectra of partially deuterated water dimers in the fundamental O-D stretch region. J Chem Phys 2024; 161:024301. [PMID: 38973761 DOI: 10.1063/5.0218733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
Spectra of mixed H/D water dimers are studied in the mid-infrared region of the O-D stretch fundamental (2630-2800 cm-1) using a pulsed supersonic slit jet and a tunable optical parametric oscillator infrared source. Over 30 bands, belonging to nine of the ten possible isotopologues (only H2O-HOD is missed), are observed and analyzed. The implications for excited state tunneling splittings, lifetime effects, and vibrational shifts are discussed. These are the first significant new experimental results on (gas phase) mixed water dimers in over 25 years, and they are valuable for testing water dimer theoretical calculations, a field which continues to be of lively current interest.
Collapse
Affiliation(s)
- A J Barclay
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | - A R W McKellar
- National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - N Moazzen-Ahmadi
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
4
|
Wang XG, Carrington T. A two-step quadrature-based variational calculation of ro-vibrational levels and wavefunctions of CO 2 using a bisector- x molecule-fixed frame. Phys Chem Chem Phys 2024; 26:15181-15191. [PMID: 38752328 DOI: 10.1039/d4cp00655k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
In this paper, we propose a new two-step strategy for computing ro-vibrational energy levels and wavefunctions of a triatomic molecule and apply it to CO2. A two-step method [J. Tennyson and B. T. Sutcliffe, Mol. Phys., 1986, 58, 1067] uses a basis whose functions are products of K-dependent "vibrational" functions and symmetric top functions. K is the quantum number for the molecule-fixed z component of the angular momentum. For a linear molecule, a two-step method is efficient because the Hamiltonian used to compute the basis functions includes the largest coupling term. The most important distinguishing feature of the two-step method we propose is that it uses an associated Legendre basis and quadrature rather than a K-dependent discrete variable representation. This reduces the cost of the calculation and simplifies the method. We have computed ro-vibrational energy levels with J up to 100 for CO2, on an accurate available potential energy surface which is known as the AMES-2 PES and present a subset of those levels. We have converged most levels up to 20 000 cm-1 to 0.0001 cm-1.
Collapse
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
5
|
Eraković M, Cvitaš MT. Tunneling splittings in the vibrationally excited states of water trimer. Phys Chem Chem Phys 2024; 26:12965-12981. [PMID: 38634688 DOI: 10.1039/d4cp00013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Tunneling splitting (TS) patterns in vibrationally excited states of the water trimer are calculated, taking into account six tunneling pathways that describe the flips of free OH bonds and five bifurcation mechanisms that break and reform hydrogen bonds in the trimer ring. A tunneling matrix (TM) model is used to derive the energy shifts due to tunneling in terms of the six distinct TM elements in symbolic form. TM elements are calculated using the recently-developed modified WKB (Wentzel-Kramers-Brillouin) method in full dimensionality. Convergence was achieved for the lowest six excited vibrational modes. Bifurcation widths of the pseudorotational quartets are shown to be of comparable size to the ground-state widths, obtained using instanton theory, or increased for some particular modes of vibration. The largest increase is obtained for the excited out-of-phase flip of two adjacent water monomers with free OH bonds pointing in opposite directions relative to the ring plane. Bifurcation widths in (D2O)3 are found to be two orders of magnitude smaller than in (H2O)3. Geometrical arguments were used to explain the order of states in some TS multiplets in vibrationally excited water trimers.
Collapse
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Marko T Cvitaš
- Department of Physics, University of Zagreb Faculty of Science, Zagreb, Croatia.
| |
Collapse
|
6
|
Simkó I, Felker PM, Bačić Z. HCl trimer: HCl-stretch excited intramolecular and intermolecular vibrational states from 12D fully coupled quantum calculations employing contracted intra- and inter-molecular bases. J Chem Phys 2024; 160:164304. [PMID: 38647302 DOI: 10.1063/5.0207366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
We present fully coupled, full-dimensional quantum calculations of the inter- and intra-molecular vibrational states of HCl trimer, a paradigmatic hydrogen-bonded molecular trimer. They are performed utilizing the recently developed methodology for the rigorous 12D quantum treatment of the vibrations of the noncovalently bound trimers of flexible diatomic molecules [Felker and Bačić, J. Chem. Phys. 158, 234109 (2023)], which was previously applied to the HF trimer by us. In this work, the many-body 12D potential energy surface (PES) of (HCl)3 [Mancini and Bowman, J. Phys. Chem. A 118, 7367 (2014)] is employed. The calculations extend to the intramolecular HCl-stretch excited vibrational states of the trimer with one- and two-quanta, together with the low-energy intermolecular vibrational states in the two excited v = 1 intramolecular vibrational manifolds. They reveal significant coupling between the intra- and inter-molecular vibrational modes. The 12D calculations also show that the frequencies of the v = 1 HCl stretching states of the HCl trimer are significantly redshifted relative to those of the isolated HCl monomer. Detailed comparison is made between the results of the 12D calculations on the two-body PES, obtained by removing the three-body term from the original 2 + 3-body PES, and those computed on the 2 + 3-body PES. It demonstrates that the three-body interactions have a strong effect on the trimer binding energy as well as on its intra- and inter-molecular vibrational energy levels. Comparison with the available spectroscopic data shows that good agreement with the experiment is achieved only if the three-body interactions are included. Some low-energy vibrational states localized in a secondary minimum of the PES are characterized as well.
Collapse
Affiliation(s)
- Irén Simkó
- Department of Chemistry, New York University, New York, New York 10003, USA
- Simons Center for Computational Physical Chemistry at New York University, New York, New York 10003, USA
| | - Peter M Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
- Simons Center for Computational Physical Chemistry at New York University, New York, New York 10003, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
7
|
Stachowiak M, Grabowska E, Wang XG, Carrington T, Szalewicz K, Jankowski P. Theory cracks old data: Rovibrational energy levels of orthoH 2-CO derived from experiment. SCIENCE ADVANCES 2024; 10:eadj8632. [PMID: 38394212 PMCID: PMC10889352 DOI: 10.1126/sciadv.adj8632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Measurements of rovibrational spectra of clusters provide physical insight only if spectral lines can be assigned to pairs of quantum states, and further insight is obtained if one can deduce the quantitative energy-level pattern. Both steps can be so difficult that some measured spectra remain unassigned, one example is orthoH2-CO. To extend the scope of spectroscopic insights, we propose to use theoretical information in interpretation of spectra. We first performed high accuracy, full-dimensional calculations of the orthoH2-CO spectrum, at the highest practically achievable levels of electronic structure theory and quantum nuclear dynamics. Then, an iterative, theory-guided method developed here allowed us to fully interpret the spectrum of orthoH2-CO, extending the range of van der Waals clusters for which spectroscopy can provide physical insights.
Collapse
Affiliation(s)
- Marcin Stachowiak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Ewelina Grabowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Piotr Jankowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
8
|
Vogt E, Simkó I, Császár AG, Kjaergaard HG. Quantum Chemical Investigation of the Cold Water Dimer Spectrum in the First OH-Stretching Overtone Region Provides a New Interpretation. J Phys Chem A 2023; 127:9409-9418. [PMID: 37930939 DOI: 10.1021/acs.jpca.3c03705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Intramolecular vibrational transition wavenumbers and intensities were calculated in the fundamental HOH-bending, fundamental OH-stretching, first OH-stretching-HOH-bending combination, and first OH-stretching overtone (ΔvOH = 2) regions of the water dimer's spectrum. Furthermore, the rotational-vibrational spectrum was calculated in the ΔvOH = 2 region at 10 K, corresponding to the temperature of the existing jet-expansion experiments. The calculated spectrum was obtained by combining results from a full-dimensional (12D) vibrational and a reduced-dimensional vibrational-rotational-tunneling model. The ΔvOH = 2 spectral region is rich in features due to contributions from multiple vibrational-rotational-tunneling sub-bands. Origins of the experimental vibrational bands depend on the assignment of the observed sub-bands. Based on our calculations, we assign the observed sub-bands, and our reassignment leads to new values for the vibrational band origins of the free donor and antisymmetric acceptor OH-stretching first overtones of ∼7227 and ∼7238 cm-1, respectively. The observed bands with origins at 7192.34 and ∼7366 cm-1 are assigned to the symmetric acceptor OH-stretching first overtone and the OH-stretching combination of the donor, respectively.
Collapse
Affiliation(s)
- Emil Vogt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Irén Simkó
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest H-1117, Hungary
- HUN-REN-ELTE Complex Chemical Systems Research Group, P.O. Box 32, Budapest 112 H-1518, Hungary
| | - Attila G Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest H-1117, Hungary
- HUN-REN-ELTE Complex Chemical Systems Research Group, P.O. Box 32, Budapest 112 H-1518, Hungary
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| |
Collapse
|
9
|
Zhu YC, Yang S, Zeng JX, Fang W, Jiang L, Zhang DH, Li XZ. Accurate calculation of tunneling splittings in water clusters using path-integral based methods. J Chem Phys 2023; 158:2895223. [PMID: 37290067 DOI: 10.1063/5.0146562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 06/10/2023] Open
Abstract
Tunneling splittings observed in molecular rovibrational spectra are significant evidence for tunneling motion of hydrogen nuclei in water clusters. Accurate calculations of the splitting sizes from first principles require a combination of high-quality inter-atomic interactions and rigorous methods to treat the nuclei with quantum mechanics. Many theoretical efforts have been made in recent decades. This Perspective focuses on two path-integral based tunneling splitting methods whose computational cost scales well with the system size, namely, the ring-polymer instanton method and the path-integral molecular dynamics (PIMD) method. From a simple derivation, we show that the former is a semiclassical approximation to the latter, despite that the two methods are derived very differently. Currently, the PIMD method is considered to be an ideal route to rigorously compute the ground-state tunneling splitting, while the instanton method sacrifices some accuracy for a significantly smaller computational cost. An application scenario of such a quantitatively rigorous calculation is to test and calibrate the potential energy surfaces of molecular systems by spectroscopic accuracy. Recent progress in water clusters is reviewed, and the current challenges are discussed.
Collapse
Affiliation(s)
- Yu-Cheng Zhu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Materials, Peking University, Beijing 100871, People's Republic of China
| | - Shuo Yang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jia-Xi Zeng
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Materials, Peking University, Beijing 100871, People's Republic of China
| | - Wei Fang
- Department of Chemistry, Fudan University, Shanghai 200438, People's Republic of China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Xin-Zheng Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Materials, Peking University, Beijing 100871, People's Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, People's Republic of China
| |
Collapse
|
10
|
Wang XG, Carrington T. Computing excited OH stretch states of water dimer in 12D using contracted intermolecular and intramolecular basis functions. J Chem Phys 2023; 158:084107. [PMID: 36859104 DOI: 10.1063/5.0139586] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Due to the ubiquity and importance of water, water dimer has been intensively studied. Computing the (ro-)vibrational spectrum of water dimer is challenging. The potential has eight wells separated by low barriers, which makes harmonic approximations of limited utility. A variational approach is imperative, but difficult because there are 12 coupled vibrational coordinates. In this paper, we use a product contracted basis whose functions are products of intramolecular and intermolecular functions computed using an iterative eigensolver. An intermediate matrix F facilitates calculating matrix elements. Using F, it is possible to do calculations on a general potential without storing the potential on the full quadrature grid. We find that surprisingly many intermolecular functions are required. This is due to the importance of coupling between inter- and intra-molecular coordinates. The full G16 symmetry of water dimer is exploited. We calculate, for the first time, monomer excited stretch states and compare P(1) transition frequencies with their experimental counterparts. We also compare with experimental vibrational shifts and tunneling splittings. Surprisingly, we find that the largest tunneling splitting, which does not involve the interchange of the two monomers, is smaller in the asymmetric stretch excited state than in the ground state. Differences between levels we compute and those obtained with a [6+6]D adiabatic approximation [Leforestier et al. J. Chem. Phys. 137 014305 (2012)] are ∼0.6 cm-1 for states without monomer excitation, ∼4 cm-1 for monomer excited bend states, and as large as ∼10 cm-1 for monomer excited stretch states.
Collapse
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
11
|
Bowman JM, Qu C, Conte R, Nandi A, Houston PL, Yu Q. Δ-Machine Learned Potential Energy Surfaces and Force Fields. J Chem Theory Comput 2023; 19:1-17. [PMID: 36527383 DOI: 10.1021/acs.jctc.2c01034] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There has been great progress in developing machine-learned potential energy surfaces (PESs) for molecules and clusters with more than 10 atoms. Unfortunately, this number of atoms generally limits the level of electronic structure theory to less than the "gold standard" CCSD(T) level. Indeed, for the well-known MD17 dataset for molecules with 9-20 atoms, all of the energies and forces were obtained with DFT calculations (PBE). This Perspective is focused on a Δ-machine learning method that we recently proposed and applied to bring DFT-based PESs to close to CCSD(T) accuracy. This is demonstrated for hydronium, N-methylacetamide, acetyl acetone, and ethanol. For 15-atom tropolone, it appears that special approaches (e.g., molecular tailoring, local CCSD(T)) are needed to obtain the CCSD(T) energies. A new aspect of this approach is the extension of Δ-machine learning to force fields. The approach is based on many-body corrections to polarizable force field potentials. This is examined in detail using the TTM2.1 water potential. The corrections make use of our recent CCSD(T) datasets for 2-b, 3-b, and 4-b interactions for water. These datasets were used to develop a new fully ab initio potential for water, termed q-AQUA.
Collapse
Affiliation(s)
- Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chen Qu
- Independent Researcher, Toronto, Canada 66777
| | - Riccardo Conte
- Dipartimento di Chimica, Università Degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Qi Yu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
12
|
Mátyus E, Martín Santa Daría A, Avila G. Exact quantum dynamics developments for floppy molecular systems and complexes. Chem Commun (Camb) 2023; 59:366-381. [PMID: 36519578 DOI: 10.1039/d2cc05123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Molecular rotation, vibration, internal rotation, isomerization, tunneling, intermolecular dynamics of weakly and strongly interacting systems, intra-to-inter-molecular energy transfer, hindered rotation and hindered translation over surfaces are important types of molecular motions. Their fundamentally correct and detailed description can be obtained by solving the nuclear Schrödinger equation on a potential energy surface. Many of the chemically interesting processes involve quantum nuclear motions which are 'delocalized' over multiple potential energy wells. These 'large-amplitude' motions in addition to the high dimensionality of the vibrational problem represent challenges to the current (ro)vibrational methodology. A review of the quantum nuclear motion methodology is provided, current bottlenecks of solving the nuclear Schrödinger equation are identified, and solution strategies are reviewed. Technical details, computational results, and analysis of these results in terms of limiting models and spectroscopically relevant concepts are highlighted for selected numerical examples.
Collapse
Affiliation(s)
- Edit Mátyus
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| | - Alberto Martín Santa Daría
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| | - Gustavo Avila
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| |
Collapse
|
13
|
Zhu YC, Yang S, Zeng JX, Fang W, Jiang L, Zhang DH, Li XZ. Torsional Tunneling Splitting in a Water Trimer. J Am Chem Soc 2022; 144:21356-21362. [DOI: 10.1021/jacs.2c09909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu-Cheng Zhu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing100871, People’s Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Materials, Peking University, Beijing100871, People’s Republic of China
| | - Shuo Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100871, People’s Republic of China
| | - Jia-Xi Zeng
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing100871, People’s Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Materials, Peking University, Beijing100871, People’s Republic of China
| | - Wei Fang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People’s Republic of China
- Department of Chemistry, Fudan University, Shanghai200438, People’s Republic of China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People’s Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People’s Republic of China
| | - Xin-Zheng Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing100871, People’s Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Materials, Peking University, Beijing100871, People’s Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, People’s Republic of China
| |
Collapse
|
14
|
Pravatto P, Fresch B, Moro GJ. The tunneling splitting and the Kramers theory of activated processes. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Papp D, Tajti V, Avila G, Mátyus E, Czakó G. CH 4·F − revisited: full-dimensional ab initio potential energy surface and variational vibrational states. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Szeged, Hungary
| | - Viktor Tajti
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Szeged, Hungary
| | - Gustavo Avila
- ELTE, Eötvös Loránd University, Institute of Chemistry, Budapest, Hungary
| | - Edit Mátyus
- ELTE, Eötvös Loránd University, Institute of Chemistry, Budapest, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
16
|
Vogt E, Simkó I, Császár AG, Kjaergaard HG. Reduced-dimensional vibrational models of the water dimer. J Chem Phys 2022; 156:164304. [PMID: 35490001 DOI: 10.1063/5.0090013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A model based on the finite-basis representation of a vibrational Hamiltonian expressed in internal coordinates is developed. The model relies on a many-mode, low-order expansion of both the kinetic energy operator and the potential energy surface (PES). Polyad truncations and energy ceilings are used to control the size of the vibrational basis to facilitate accurate computations of the OH stretch and HOH bend intramolecular transitions of the water dimer (H2 16O)2. Advantages and potential pitfalls of the applied approximations are highlighted. The importance of choices related to the treatment of the kinetic energy operator in reduced-dimensional calculations and the accuracy of different water dimer PESs are discussed. A range of different reduced-dimensional computations are performed to investigate the wavenumber shifts in the intramolecular transitions caused by the coupling between the intra- and intermolecular modes. With the use of symmetry, full 12-dimensional vibrational energy levels of the water dimer are calculated, predicting accurately the experimentally observed intramolecular fundamentals. It is found that one can also predict accurate intramolecular transition wavenumbers for the water dimer by combining a set of computationally inexpensive reduced-dimensional calculations, thereby guiding future effective-Hamiltonian treatments.
Collapse
Affiliation(s)
- Emil Vogt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Irén Simkó
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Attila G Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
17
|
Vogt E, Kjaergaard HG. Vibrational Spectroscopy of the Water Dimer at Jet-Cooled and Atmospheric Temperatures. Annu Rev Phys Chem 2022; 73:209-231. [PMID: 35044791 DOI: 10.1146/annurev-physchem-082720-104659] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vibrational spectroscopy of the water dimer provides an understanding of basic hydrogen bonding in water clusters, and with about one water dimer for every 1,000 water molecules, it plays a critical role in atmospheric science. Here, we review how the experimental and theoretical progress of the past decades has improved our understanding of water dimer vibrational spectroscopy under both cold and warm conditions. We focus on the intramolecular OH-stretching transitions of the donor unit, because these are the ones mostly affected by dimer formation and because their assignment has proven a challenge. We review cold experimental results from early matrix isolation to recent mass-selected jet expansion techniques and, in parallel, the improvements in the theoretical anharmonic models. We discuss and illustrate changes in the vibrational spectra of complexes upon increasing temperature, and the difficulties in recording and calculating these spectra. In the atmosphere, water dimer spectra at ambient temperature are crucial. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Emil Vogt
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark;
| | | |
Collapse
|
18
|
Felker PM, Bacic Z. Intermolecular rovibrational states of the H2O-CO2 and D2O-CO2 van der Waals complexes. J Chem Phys 2022; 156:064301. [DOI: 10.1063/5.0083754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, UCLA, United States of America
| | - Zlatko Bacic
- Department of Chemistry, New York University Department of Chemistry, United States of America
| |
Collapse
|
19
|
Felker PM, Bačić Z. Noncovalently bound molecular complexes beyond diatom–diatom systems: full-dimensional, fully coupled quantum calculations of rovibrational states. Phys Chem Chem Phys 2022; 24:24655-24676. [DOI: 10.1039/d2cp04005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The methodological advances made in recent years have significantly extended the range and dimensionality of noncovalently bound molecular complexes for which full-dimensional quantum calculations of their rovibrational states are feasible.
Collapse
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, NY, 10003, USA
- Simons Center for Computational Physical Chemistry at New York University, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
| |
Collapse
|
20
|
Kallullathil SD, Carrington T. Computing vibrational energy levels by solving linear equations using a tensor method with an imposed rank. J Chem Phys 2021; 155:234105. [PMID: 34937358 DOI: 10.1063/5.0075412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Present day computers do not have enough memory to store the high-dimensional tensors required when using a direct product basis to compute vibrational energy levels of a polyatomic molecule with more than about five atoms. One way to deal with this problem is to represent tensors using a tensor format. In this paper, we use the canonical polyadic (CP) format. Energy levels are computed by building a basis from vectors obtained by solving linear equations. The method can be thought of as a CP realization of a block inverse iteration method with multiple shifts. The CP rank of the tensors is fixed, and the linear equations are solved with an method. There is no need for rank reduction and no need for orthogonalization, and tensors with a rank larger than the fixed rank used to solve the linear equations are never generated. The ideas are tested by computing vibrational energy levels of a 64-D bilinearly coupled model Hamiltonian and of acetonitrile (12-D).
Collapse
Affiliation(s)
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
21
|
Felker PM, Bačić Z. Intra- and intermolecular rovibrational states of HCl-H2O and DCl-H2O dimers from full-dimensional and fully coupled quantum calculations. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York 10003, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
22
|
Simmons J, Carrington Jr. T. Using collocation and solutions for a sum-of-product potential to compute vibrational energy levels for general potentials. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Jankowski P, Grabowska E, Szalewicz K. On the role of coupled-clusters' full triple and perturbative quadruple excitations on rovibrational spectra of van der Waals complexes. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1955989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Piotr Jankowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ewelina Grabowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
| |
Collapse
|
24
|
Felker PM, Liu Y, Li J, Bačić Z. DCl-H 2O, HCl-D 2O, and DCl-D 2O Dimers: Inter- and Intramolecular Vibrational States and Frequency Shifts from Fully Coupled Quantum Calculations on a Full-Dimensional Neural Network Potential Energy Surface. J Phys Chem A 2021; 125:6437-6449. [PMID: 34261318 DOI: 10.1021/acs.jpca.1c04662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report full-dimensional and fully coupled quantum calculations of the inter- and intramolecular vibrational states of three isotopologues of the hydrogen chloride-water dimer: DCl-H2O (DH), HCl-D2O (HD), and DCl-D2O (DD). The present study extends our recent theoretical investigation of the nine-dimensional (9D) vibrational level structure of the HCl-H2O (HH) dimer [Liu, Y.; Li, J.; Felker, P. M.; Bačić, Z. Phys. Chem. Chem. Phys. 2021, 23, 7101-7114]. It employs the same accurate 9D permutation invariant polynomial-neural network potential energy surface and the highly efficient bound-state methodology. The objective of this work is to elucidate the isotopologue variations of a range of bound-state properties of the hydrogen chloride-water dimer and compare them to those of the HH dimer. In order to achieve this, for the isotopologues considered, the rigorous 9D quantum calculations performed encompass all intramolecular vibrational fundamentals, and their frequency shifts relative to the isolated monomer values, together with the low-lying intermolecular vibrational states in each of the intramolecular vibrational manifolds of interest. Moreover, for the ground state of each isotopologue, several informative vibrationally averaged intermolecular geometric properties of the dimer are computed, as well as the three rotational constants. The energies of the intermolecular inversion and rock modes, which mainly involve the motions of the water moiety, differ greatly for H2O and D2O, but are much less sensitive to whether the hydrogen chloride isotopologue is HCl or DCl. On the other hand, the excitation of the HCl/DCl stretch changes significantly the energies of the water inversion and rock modes. The DCl stretch frequency shift computed in 9D for the DD dimer, -114.91 cm-1, agrees extremely well with the corresponding experimental value of -115.20 cm-1 measured by Saykally and co-workers.
Collapse
Affiliation(s)
- Peter M Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, United States.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
25
|
Wang XG, Carrington T. Using nondirect product Wigner D basis functions and the symmetry-adapted Lanczos algorithm to compute the ro-vibrational spectrum of CH 4-H 2O. J Chem Phys 2021; 154:124112. [PMID: 33810654 DOI: 10.1063/5.0044010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By doing calculations on the methane-water van der Waals complex, we demonstrate that highly converged energy levels and wavefunctions can be obtained using Wigner D basis functions and the Symmetry-Adapted Lanczos (SAL) method. The Wigner D basis is a nondirect product basis and, therefore, efficient when the kinetic energy operator has accessible singularities. The SAL method makes it possible to exploit symmetry to label energy levels and reduce the cost of the calculation, without explicitly using symmetry-adapted basis functions. Line strengths are computed, and new bands are identified. In particular, we find unusually strong transitions between states associated with the isomers of the global minimum and the secondary minimum.
Collapse
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
26
|
Martín Santa Daría A, Avila G, Mátyus E. Fingerprint region of the formic acid dimer: variational vibrational computations in curvilinear coordinates. Phys Chem Chem Phys 2021; 23:6526-6535. [PMID: 33690754 DOI: 10.1039/d0cp06289h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curvilinear kinetic energy models are developed for variational nuclear motion computations including the inter- and the low-frequency intra-molecular degrees of freedom of the formic acid dimer. The coupling of the inter- and intra-molecular modes is studied by solving the vibrational Schrödinger equation for a series of vibrational models, from two up to ten active vibrational degrees of freedom by selecting various combinations of active modes and constrained coordinate values. Vibrational states, nodal assignment, and infrared vibrational intensity information is computed using the full-dimensional potential energy surface (PES) and electric dipole moment surface developed by Qu and Bowman [Phys. Chem. Chem. Phys., 2016, 18, 24835; J. Chem. Phys., 2018, 148, 241713]. Good results are obtained for several fundamental and combination bands in comparison with jet-cooled vibrational spectroscopy experiments, but the description of the ν8 and ν9 fundamental vibrations, which are close in energy and have the same symmetry, appears to be problematic. For further progress in comparison with experiment, the potential energy surface, and in particular, its multi-dimensional couplings representation, requires further improvement.
Collapse
Affiliation(s)
- Alberto Martín Santa Daría
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| | | | | |
Collapse
|
27
|
Eraković M, Cvitaš MT. Tunnelling splitting patterns in some partially deuterated water trimers. Phys Chem Chem Phys 2021; 23:4240-4254. [PMID: 33586727 DOI: 10.1039/d0cp06135b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We apply our recently developed semiclassical method for calculating tunnelling splittings (TS) in asymmetric systems to make the first characterization of the ground-state TS pattern of some partially deuterated water trimers. Similarly to homoisotopic water trimers, the ground-state TS patterns are explained in terms of six distinct rearrangement mechanisms. TS patterns in (D2O)(H2O)2 and (H2O)(D2O)2 are composed of sextets induced by the dynamics of flips, and each of its levels is further finely split into a quartet of doublets and a doublet of quartets, respectively, due to various bifurcation dynamics. The TS pattern is obtained using 18 distinct tunnelling matrix elements. TS patterns of (HOD)(H2O)2 and (HOD)(D2O)2 each consists of two sextets, belonging to in-bond and out-of-bond substituted isomers. These sextet levels are further split into quartets by bifurcations. The TS pattern is computed in terms of 13 matrix elements. We also derive analytic expressions for bifurcation tunnelling splittings in terms of tunnelling matrix elements using symmetry. The present approach can be applied to other water clusters and also to the low-lying vibrationally excited states and should help in the interpretation and assignment of experimental spectra in the future.
Collapse
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia.
| | - Marko T Cvitaš
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia.
| |
Collapse
|
28
|
Sahu N, Richardson JO, Berger R. Instanton calculations of tunneling splittings in chiral molecules. J Comput Chem 2021; 42:210-221. [PMID: 33259074 DOI: 10.1002/jcc.26447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 11/11/2022]
Abstract
We report the ground state tunneling splittings (ΔE± ) of a number of axially chiral molecules using the ring-polymer instanton (RPI) method (J. Chem. Phys., 2011, 134, 054109). The list includes isotopomers of hydrogen dichalcogenides H2 X2 (X = O, S, Se, Te, and Po), hydrogen thioperoxide HSOH and dichlorodisulfane S2 Cl2 . Ab initio electronic-structure calculations have been performed on the level of second-order Møller-Plesset perturbation (MP2) theory either with split-valance basis sets or augmented correlation-consistent basis sets on H, O, S, and Cl atoms. Energy-consistent pseudopotential and corresponding triple zeta basis sets of the Stuttgart group are used on Se, Te, and Po atoms. The results are further improved using single point calculations performed at the coupled cluster level with iterative singles and doubles and perturbative triples amplitudes. When available for comparison, our computed values of ΔE± are found to lie within the same order of magnitude as values reported in the literature, although RPI also provides predictions for H2 Po2 and S2 Cl2 , which have not previously been directly calculated. Since RPI is a single-shot method which does not require detailed prior knowledge of the optimal tunneling path, it offers an effective way for estimating the tunneling dynamics of more complex chiral molecules, and especially those with small tunneling splittings.
Collapse
Affiliation(s)
- Nityananda Sahu
- Fachbereich Chemie, Theoretische Chemie, Philipps Universität Marburg, Marburg, Germany
| | | | - Robert Berger
- Fachbereich Chemie, Theoretische Chemie, Philipps Universität Marburg, Marburg, Germany
| |
Collapse
|
29
|
Felker PM, Bačić Z. HDO–CO Complex: D-Bonded and H-Bonded Isomers and Intra- and Intermolecular Rovibrational States from Full-Dimensional and Fully Coupled Quantum Calculations. J Phys Chem A 2021; 125:980-989. [DOI: 10.1021/acs.jpca.0c10320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, United States
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
30
|
Cendagorta JR, Shen H, Bačić Z, Tuckerman ME. Enhanced Sampling Path Integral Methods Using Neural Network Potential Energy Surfaces with Application to Diffusion in Hydrogen Hydrates. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Hengyuan Shen
- Department of Chemistry New York University Shanghai 1555 Century Avenue Pudong Shanghai 200122 China
| | - Zlatko Bačić
- Department of Chemistry New York University New York NY 10003 USA
- NYU‐ECNU Center for Computational Chemistry at NYU Shanghai 3663 Zhongshan Road, North Shanghai 200062 China
| | - Mark E. Tuckerman
- Department of Chemistry New York University New York NY 10003 USA
- NYU‐ECNU Center for Computational Chemistry at NYU Shanghai 3663 Zhongshan Road, North Shanghai 200062 China
- Courant Institute of Mathematical Sciences New York University New York NY 10012 USA
| |
Collapse
|
31
|
Eraković M, Cvitaš MT. Tunneling splittings of vibrationally excited states using general instanton paths. J Chem Phys 2020; 153:134106. [PMID: 33032414 DOI: 10.1063/5.0024210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A multidimensional semiclassical method for calculating tunneling splittings in vibrationally excited states of molecules using Cartesian coordinates is developed. It is an extension of the theory by Mil'nikov and Nakamura [J. Chem. Phys. 122, 124311 (2005)] to asymmetric paths that are necessary for calculating tunneling splitting patterns in multi-well systems, such as water clusters. Additionally, new terms are introduced in the description of the semiclassical wavefunction that drastically improves the splitting estimates for certain systems. The method is based on the instanton theory and builds the semiclassical wavefunction of the vibrationally excited states from the ground-state instanton wavefunction along the minimum action path and its harmonic neighborhood. The splittings of excited states are thus obtained at a negligible added numerical effort. The cost is concentrated, as for the ground-state splittings, in the instanton path optimization and the hessian evaluation along the path. The method can thus be applied without modification to many mid-sized molecules in full dimensionality and in combination with on-the-fly evaluation of electronic potentials. The tests were performed on several model potentials and on the water dimer.
Collapse
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry, Ruder Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Marko T Cvitaš
- Department of Physical Chemistry, Ruder Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
32
|
Felker PM, Bačić Z. H2O–CO and D2O–CO complexes: Intra- and intermolecular rovibrational states from full-dimensional and fully coupled quantum calculations. J Chem Phys 2020; 153:074107. [DOI: 10.1063/5.0020566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
33
|
Wang L, Zhang XL, Zhai Y, Nooijen M, Li H. Explicitly correlated ab initio potential energy surface and predicted rovibrational spectra for H 2O-N 2 and D 2O-N 2 complexes. J Chem Phys 2020; 153:054303. [PMID: 32770926 DOI: 10.1063/5.0009098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
An ab initio intermolecular potential energy surface (PES) for the van der Waals complex of H2O-N2 that explicitly incorporates the intramolecular Q2 bending normal mode of the H2O monomer is presented. The electronic structure computations have been carried out at the explicitly correlated coupled cluster theory [CCSD(T)-F12] with an augmented correlation-consistent triple zeta basis set and an additional bond function. Analytic five-dimensional intermolecular PESs for ν2(H2O) = 0 and 1 are obtained by fitting to the multi-dimensional Morse/long-range potential function form. These fits to 40 890 points have the root-mean-square (rms) discrepancy of 0.88 cm-1 for interaction energies less than 2000.0 cm-1. The resulting vibrationally averaged PESs provide good representations of the experimental microwave and infrared data: for microwave transitions of H2O-N2, the rms discrepancy is only 0.0003 cm-1, and for infrared transitions of the A1 symmetry of the H2O(ν2 = 1 ← 0)-N2, the rms discrepancy is 0.001 cm-1. The calculated infrared band origin shifts associated with the ν2 bending vibration of water are 2.210 cm-1 and 1.323 cm-1 for H2O-N2 and D2O-N2, respectively, in good agreement with the experimental values of 2.254 cm-1 and 1.266 cm-1. The benchmark tests and comparisons of the predicted spectral properties are carried out between CCSD(T)-F12a and CCSD(T)-F12b approaches.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Xiao-Long Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Marcel Nooijen
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| |
Collapse
|
34
|
Wang XG, Carrington T. A variational calculation of vibrational levels of vinyl radical. J Chem Phys 2020; 152:204311. [PMID: 32486683 DOI: 10.1063/5.0007225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the vibrational energy levels of vinyl radical (VR) that are computed with a Lanczos eigensolver and a contracted basis. Many of the levels of the two previous VR variational calculations differ significantly and differ also from those reported in this paper. We identify the source of and correct symmetry errors on the potential energy surfaces used in the previous calculations. VR has two equivalent equilibrium structures. By plotting wavefunction cuts, we show that two tunneling paths play an important role. Using the computed wavefunctions, it is possible to assign many states and thereby to determine tunneling splittings that are compared with their experimental counterparts. Our computed red shift of the hot band at 2897.23 cm-1, observed by Dong et al. [J Chem. Phys. 128, 044305 (2008)], is 4.47 cm-1, which is close to the experimental value of 4.63 cm-1.
Collapse
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
35
|
Garcia J, Podeszwa R, Szalewicz K. SAPT codes for calculations of intermolecular interaction energies. J Chem Phys 2020; 152:184109. [PMID: 32414261 DOI: 10.1063/5.0005093] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Symmetry-adapted perturbation theory (SAPT) is a method for calculations of intermolecular (noncovalent) interaction energies. The set of SAPT codes that is described here, the current version named SAPT2020, includes virtually all variants of SAPT developed so far, among them two-body SAPT based on perturbative, coupled cluster, and density functional theory descriptions of monomers, three-body SAPT, and two-body SAPT for some classes of open-shell monomers. The properties of systems governed by noncovalent interactions can be predicted only if potential energy surfaces (force fields) are available. SAPT is the preferred approach for generating such surfaces since it is seamlessly connected to the asymptotic expansion of interaction energy. SAPT2020 includes codes for automatic development of such surfaces, enabling generation of complete dimer surfaces with a rigid monomer approximation for dimers containing about one hundred atoms. These codes can also be used to obtain surfaces including internal degrees of freedom of monomers.
Collapse
Affiliation(s)
- Javier Garcia
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Rafał Podeszwa
- Institute of Chemistry, University of Silesia at Katowice, Szkolna 9, Katowice, Poland
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
36
|
Metz MP, Szalewicz K. Automatic Generation of Flexible-Monomer Intermolecular Potential Energy Surfaces. J Chem Theory Comput 2020; 16:2317-2339. [PMID: 32240593 DOI: 10.1021/acs.jctc.9b01241] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A method is developed for automatic generation of nonreactive intermolecular two-body potential energy surfaces (PESs) including intramonomer degrees of freedom. This method, called flex-autoPES, is an extension of the autoPES method developed earlier, which assumes rigid monomers. In both cases, the whole PES development proceeds without any human intervention. The functional form used is a sum of products of site-site functions (both atomic and off-atomic sites can be used). The leading terms with sites involving different monomers are of physically motivated form. The long-range part of a PES is computed from monomer properties without using any dimer information. The close-range part is fitted to dimer interaction energies computed using electronic structure methods. Virtually any method can be used in such calculations, but the use of symmetry-adapted perturbation theory provides a seamless connection to the long-range part of the PES. The performance of the flex-autoPES code was tested by developing a full-dimensional PES for the water dimer and PESs including only some soft intramonomer degrees of freedom for the ethylene glycol dimer and for the ethylene glycol-water dimer. In the case of the water dimer, the root-mean-square error (RMSE) of the PES from the data points with negative total energies is 0.03 kcal/mol, and we expect this PES to be more accurate than any previously published PES of this type. For the ethylene glycol dimer and the ethylene glycol-water dimers, the analogous RMSEs are 0.25 and 0.1 kcal/mol, respectively.
Collapse
Affiliation(s)
- Michael P Metz
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
37
|
Eraković M, Vaillant CL, Cvitaš MT. Instanton theory of ground-state tunneling splittings with general paths. J Chem Phys 2020; 152:084111. [PMID: 32113369 DOI: 10.1063/1.5145278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a multidimensional instanton theory for calculating ground-state tunneling splittings in Cartesian coordinates for general paths. It is an extension of the method by Mil'nikov and Nakamura [J. Chem. Phys. 115, 6881 (2001)] to include asymmetric paths that are necessary for calculating tunneling splitting patterns in multi-well systems, such as water clusters. The approach avoids multiple expensive matrix diagonalizations to converge the fluctuation prefactor in the ring-polymer instanton (RPI) method, and instead replaces them by an integration of a Riccati differential equation. When combined with the string method for locating instantons, we avoid the need to converge the calculation with respect to the imaginary time period of the semiclassical orbit, thereby reducing the number of convergence parameters of the optimized object to just one: the number of equally spaced system replicas used to represent the instanton path. The entirety of the numerical effort is thus concentrated in optimizing the shape of the path and evaluating hessians along the path, which is a dramatic improvement over RPI. In addition to the standard instanton approximations, we neglect the coupling of vibrational modes to external rotations. The method is tested on the model potential of malonaldehyde and on the water dimer and trimer, giving close agreement with RPI at a much-reduced cost.
Collapse
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry, Rudđđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Christophe L Vaillant
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Marko T Cvitaš
- Department of Physical Chemistry, Rudđđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
38
|
Avila G, Papp D, Czakó G, Mátyus E. Exact quantum dynamics background of dispersion interactions: case study for CH 4·Ar in full (12) dimensions. Phys Chem Chem Phys 2020; 22:2792-2802. [PMID: 31957778 DOI: 10.1039/c9cp04426d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A full-dimensional ab initio potential energy surface of spectroscopic quality is developed for the van-der-Waals complex of a methane molecule and an argon atom. Variational vibrational states are computed on this surface including all twelve (12) vibrational degrees of freedom of the methane-argon complex using the GENIUSH computer program and the Smolyak sparse grid method. The full-dimensional computations make it possible to study the fine details of the interaction and distortion effects and to make a direct assessment of the reduced-dimensionality models often used in the quantum dynamics study of weakly-bound complexes. A 12-dimensional (12D) vibrational computation including only a single harmonic oscillator basis function (9D) to describe the methane fragment (for which we use the ground-state effective structure as the reference structure) has a 0.40 cm-1 root-mean-square error (rms) with respect to the converged 12D bound-state excitation energies, which is less than half of the rms of the 3D model set up with the 〈r〉0 methane structure. Allowing 10 basis functions for the methane fragment in a 12D computation performs much better than the 3D models by reducing the rms of the bound state vibrational energies to 0.07 cm-1. The full-dimensional potential energy surface correctly describes the dissociation of the system, which together with further development of the variational (ro)vibrational methodology opens a route to the study of the role of dispersion forces in the excited methane vibrations and the energy transfer from the intra- to the intermolecular vibrational modes.
Collapse
Affiliation(s)
- Gustavo Avila
- Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| | - Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Edit Mátyus
- Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| |
Collapse
|
39
|
Felker PM, Bačić Z. Flexible water molecule in C60: Intramolecular vibrational frequencies and translation-rotation eigenstates from fully coupled nine-dimensional quantum calculations with small basis sets. J Chem Phys 2020; 152:014108. [DOI: 10.1063/1.5138992] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
40
|
Cvitaš MT, Richardson JO. Quantum tunnelling pathways of the water pentamer. Phys Chem Chem Phys 2020; 22:1035-1044. [DOI: 10.1039/c9cp05561d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Five tunnelling rearrangement pathways in water pentamer are responsible for the ground-state tunnelling splitting pattern of 320 states.
Collapse
Affiliation(s)
- Marko T. Cvitaš
- Department of Physical Chemistry
- Ruđer Bošković Institute
- Croatia
| | | |
Collapse
|
41
|
Vaillant CL, Wales DJ, Althorpe SC. Tunneling Splittings in Water Clusters from Path Integral Molecular Dynamics. J Phys Chem Lett 2019; 10:7300-7304. [PMID: 31682130 DOI: 10.1021/acs.jpclett.9b02951] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present calculations of tunneling splittings in selected small water clusters, based on a recently developed path integral molecular dynamics (PIMD) method. The ground-rotational-state tunneling motions associated with the largest splittings in the water dimer, trimer, and hexamer are considered, and we show that the PIMD predictions are in very good agreement with benchmark quantum and experimental results. As the tunneling spectra are highly sensitive to both the details of the quantum dynamics and the potential energy surface, our calculations are a validation of the MB-Pol surface as well as the accuracy of PIMD. The favorable scaling of PIMD with system size paves the way for calculations of tunneling splittings in large, nonrigid molecular systems with motions that cannot be treated accurately by other methods, such as the semiclassical instanton.
Collapse
Affiliation(s)
- C L Vaillant
- Laboratory of Theoretical Physical Chemistry , Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - D J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - S C Althorpe
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
42
|
Schwan R, Qu C, Mani D, Pal N, van der Meer L, Redlich B, Leforestier C, Bowman JM, Schwaab G, Havenith M. Observation of the Low‐Frequency Spectrum of the Water Dimer as a Sensitive Test of the Water Dimer Potential and Dipole Moment Surfaces. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Raffael Schwan
- Physical Chemistry II Department of Chemistry and Biochemistry Ruhr-Universität Bochum Bochum Germany
| | - Chen Qu
- Cherry L. Emerson Center for Scientific Computations and Department of Chemistry Emory University Atlanta Georgia 30322 USA
| | - Devendra Mani
- Physical Chemistry II Department of Chemistry and Biochemistry Ruhr-Universität Bochum Bochum Germany
| | - Nitish Pal
- Physical Chemistry II Department of Chemistry and Biochemistry Ruhr-Universität Bochum Bochum Germany
| | - Lex van der Meer
- Radboud University Institute for Molecules and Materials, FELIX Laboratory 6525 ED Nijmegen The Netherlands
| | - Britta Redlich
- Radboud University Institute for Molecules and Materials, FELIX Laboratory 6525 ED Nijmegen The Netherlands
| | - Claude Leforestier
- Institut Charles Gerhardt, UMR 5253 CNRS-UM-ENSCM Université de Montpellier Place Eugène Bataillon 34090 Montpellier France
| | - Joel M. Bowman
- Cherry L. Emerson Center for Scientific Computations and Department of Chemistry Emory University Atlanta Georgia 30322 USA
| | - Gerhard Schwaab
- Physical Chemistry II Department of Chemistry and Biochemistry Ruhr-Universität Bochum Bochum Germany
| | - Martina Havenith
- Physical Chemistry II Department of Chemistry and Biochemistry Ruhr-Universität Bochum Bochum Germany
| |
Collapse
|
43
|
Schwan R, Qu C, Mani D, Pal N, van der Meer L, Redlich B, Leforestier C, Bowman JM, Schwaab G, Havenith M. Observation of the Low-Frequency Spectrum of the Water Dimer as a Sensitive Test of the Water Dimer Potential and Dipole Moment Surfaces. Angew Chem Int Ed Engl 2019; 58:13119-13126. [PMID: 31350942 PMCID: PMC7687217 DOI: 10.1002/anie.201906048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/23/2019] [Indexed: 11/12/2022]
Abstract
Using the helium nanodroplet isolation setup at the ultrabright free-electron laser source FELIX in Nijmegen (BoHeNDI@FELIX), the intermolecular modes of water dimer in the frequency region from 70 to 550 cm-1 were recorded. Observed bands were assigned to donor torsion, acceptor wag, acceptor twist, intermolecular stretch, donor torsion overtone, and in-plane and out-of-plane librational modes. This experimental data set provides a sensitive test for state-of-the-art water potentials and dipole moment surfaces. Theoretical calculations of the IR spectrum are presented using high-level quantum and approximate quasiclassical molecular dynamics approaches. These calculations use the full-dimensional ab initio WHHB potential and dipole moment surfaces. Based on the experimental data, a considerable increase of the acceptor switch and a bifurcation tunneling splitting in the librational mode is deduced, which is a consequence of the effective decrease in the tunneling barrier.
Collapse
Affiliation(s)
- Raffael Schwan
- Physical Chemistry II, Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Chen Qu
- Cherry L. Emerson Center for Scientific Computations and Department of Chemistry, Emory University, Atlanta, Georgia, 30322, USA
| | - Devendra Mani
- Physical Chemistry II, Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Nitish Pal
- Physical Chemistry II, Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Lex van der Meer
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, 6525 ED, Nijmegen, The Netherlands
| | - Britta Redlich
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, 6525 ED, Nijmegen, The Netherlands
| | - Claude Leforestier
- Institut Charles Gerhardt, UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon, 34090, Montpellier, France
| | - Joel M Bowman
- Cherry L. Emerson Center for Scientific Computations and Department of Chemistry, Emory University, Atlanta, Georgia, 30322, USA
| | - Gerhard Schwaab
- Physical Chemistry II, Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Martina Havenith
- Physical Chemistry II, Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
44
|
Zhang XL, Ma YT, Zhai Y, Li H. Full quantum calculation of the rovibrational states and intensities for a symmetric top-linear molecule dimer: Hamiltonian, basis set, and matrix elements. J Chem Phys 2019; 151:074301. [PMID: 31438702 DOI: 10.1063/1.5115496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rovibrational energy levels and intensities of the CH3F-H2 dimer have been obtained using our recent global intermolecular potential energy surface [X.-L. Zhang et al., J. Chem. Phys. 148, 124302 (2018)]. The Hamiltonian, basis set, and matrix elements are derived and given for a symmetric top-linear molecule complex. This approach to the generation of energy levels and wavefunctions can readily be utilized for studying the rovibrational spectra of other van der Waals complexes composed of a symmetric top molecule and a linear molecule, and may readily be extended to other complexes of nonlinear molecules and linear molecules. To confirm our method, the rovibrational levels of the H2O-H2 dimer have been computed and shown to be in good agreement with experiment and with previous theoretical results. The rovibrational Schrödinger equation has been solved using a Lanczos algorithm together with an uncoupled product basis set. As expected, dimers containing ortho-H2 are more strongly bound than dimers containing para-H2. Energies and wavefunctions of the discrete rovibrational levels of CH3F-paraH2 complexes obtained from the direct vibrationally averaged 5-dimensional potentials are in good agreement with the results of the reduced 3-dimensional adiabatic-hindered-rotor (AHR) approximation. Accurate calculations of the transition line strengths for the orthoCH3F-paraH2 complex are also carried out, and are consistent with results obtained using the AHR approximation. The microwave spectrum associated with the orthoCH3F-orthoH2 dimer has been predicted for the first time.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yong-Tao Ma
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yu Zhai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| |
Collapse
|
45
|
Felker PM, Bačić Z. Weakly bound molecular dimers: Intramolecular vibrational fundamentals, overtones, and tunneling splittings from full-dimensional quantum calculations using compact contracted bases of intramolecular and low-energy rigid-monomer intermolecular eigenstates. J Chem Phys 2019; 151:024305. [DOI: 10.1063/1.5111131] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
| |
Collapse
|
46
|
Avila G, Mátyus E. Toward breaking the curse of dimensionality in (ro)vibrational computations of molecular systems with multiple large-amplitude motions. J Chem Phys 2019; 150:174107. [PMID: 31067897 DOI: 10.1063/1.5090846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Methodological progress is reported in the challenging direction of a black-box-type variational solution of the (ro)vibrational Schrödinger equation applicable to floppy, polyatomic systems with multiple large-amplitude motions. This progress is achieved through the combination of (i) the numerical kinetic-energy operator (KEO) approach of Mátyus et al. [J. Chem. Phys. 130, 134112 (2009)] and (ii) the Smolyak nonproduct grid method of Avila and Carrington, Jr. [J. Chem. Phys. 131, 174103 (2009)]. The numerical representation of the KEO makes it possible to choose internal coordinates and a body-fixed frame best suited for the molecular system. The Smolyak scheme reduces the size of the direct-product grid representation by orders of magnitude, while retaining some of the useful features of it. As a result, multidimensional (ro)vibrational states are computed with system-adapted coordinates, a compact basis- and grid-representation, and an iterative eigensolver. Details of the methodological developments and the first numerical applications are presented for the CH4·Ar complex treated in full (12D) vibrational dimensionality.
Collapse
Affiliation(s)
- Gustavo Avila
- Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest 1117, Hungary
| | - Edit Mátyus
- Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest 1117, Hungary
| |
Collapse
|
47
|
Wang XG, Carrington T. Computing vibration-rotation-tunnelling levels of HOD dimer. Phys Chem Chem Phys 2019; 21:3527-3536. [PMID: 30123894 DOI: 10.1039/c8cp04451a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using an accurate 6D water dimer potential energy surface, we compute vibration-rotation-tunnelling levels of HOD dimer, by assuming that the two monomers are rigid. HOD dimer has two isomers, a D-bonded isomer and an H-bonded isomer, and the wavefunctions of both isomers have amplitude in four wells. HOD dimer is important because, unlike the case of H2O dimer or D2O dimer, it is possible to measure the largest tunnelling splitting. Results for HOD dimer, therefore facilitate the testing of H2O dimer potentials. In J. Chem. Phys., 1995, 102, 1114, experimental results were interpreted in terms of 1D models. Experimental splittings of both isomers, obtained by fitting an energy level equation to spectra, are in good agreement with those we compute.
Collapse
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
48
|
Metz MP, Szalewicz K, Sarka J, Tóbiás R, Császár AG, Mátyus E. Molecular dimers of methane clathrates: ab initio potential energy surfaces and variational vibrational states. Phys Chem Chem Phys 2019; 21:13504-13525. [DOI: 10.1039/c9cp00993k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Motivated by the energetic and environmental relevance of methane clathrates, highly accurate ab initio potential energy surfaces (PESs) have been developed for the three possible dimers of the methane and water molecules: (H2O)2, CH4·H2O, and (CH4)2.
Collapse
Affiliation(s)
- Michael P. Metz
- Department of Physics and Astronomy
- University of Delaware
- Newark
- USA
| | | | - János Sarka
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Roland Tóbiás
- Institute of Chemistry
- ELTE Eötvös Loránd University
- Budapest
- Hungary
- MTA-ELTE Complex Chemical Systems Research Group
| | - Attila G. Császár
- Institute of Chemistry
- ELTE Eötvös Loránd University
- Budapest
- Hungary
- MTA-ELTE Complex Chemical Systems Research Group
| | - Edit Mátyus
- Institute of Chemistry
- ELTE Eötvös Loránd University
- Budapest
- Hungary
| |
Collapse
|
49
|
Intermolecular rovibrational bound states of H2O H2 dimer from a MultiConfiguration Time Dependent Hartree approach. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Vaillant CL, Wales DJ, Althorpe SC. Tunneling splittings from path-integral molecular dynamics using a Langevin thermostat. J Chem Phys 2018; 148:234102. [DOI: 10.1063/1.5029258] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- C. L. Vaillant
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - D. J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - S. C. Althorpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|