1
|
Janković V, Mančal T. Self-consistent approach to the dynamics of excitation energy transfer in multichromophoric systems. J Chem Phys 2024; 161:204108. [PMID: 39589224 DOI: 10.1063/5.0237483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Computationally tractable and reliable, albeit approximate, methods for studying exciton transport in molecular aggregates immersed in structured bosonic environments have been actively developed. Going beyond the lowest-order (Born) approximation for the memory kernel of the quantum master equation typically results in complicated and possibly divergent expressions. Starting from the memory kernel in the Born approximation, and recognizing the quantum master equation as the Dyson equation of Green's functions theory, we formulate the self-consistent Born approximation to resum the memory-kernel perturbation series in powers of the exciton-environment interaction. Our formulation is in the Liouville space and frequency domain and handles arbitrary exciton-environment spectral densities. In a molecular dimer coupled to an overdamped oscillator environment, we conclude that the self-consistent cycle significantly improves the Born-approximation energy-transfer dynamics. The dynamics in the self-consistent Born approximation agree well with the solutions of hierarchical equations of motion over a wide range of parameters, including the most challenging regimes of strong exciton-environment interactions, slow environments, and low temperatures. This is rationalized by the analytical considerations of coherence-dephasing dynamics in the pure-dephasing model. We find that the self-consistent Born approximation is good (poor) at describing energy transfer modulated by an underdamped vibration resonant (off-resonant) with the exciton energy gap. Nevertheless, it reasonably describes exciton dynamics in the seven-site model of the Fenna-Matthews-Olson complex in a realistic environment comprising both an overdamped continuum and underdamped vibrations.
Collapse
Affiliation(s)
- Veljko Janković
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Tomáš Mančal
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| |
Collapse
|
2
|
Liu Y, Mulvihill E, Geva E. Combining the generalized quantum master equation approach with quasiclassical mapping Hamiltonian methods to simulate the dynamics of electronic coherences. J Chem Phys 2024; 161:164101. [PMID: 39435829 DOI: 10.1063/5.0232462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
The generalized quantum master equation (GQME) approach provides a powerful general-purpose framework for simulating the inherently quantum mechanical dynamics of a subset of electronic reduced density matrix elements of interest in complex molecular systems. Previous studies have found that combining the GQME approach with quasiclassical mapping Hamiltonian (QC/MH) methods can dramatically improve the accuracy of electronic populations obtained via those methods. In this paper, we perform a complimentary study of the advantages offered by the GQME approach for simulating the dynamics of electronic coherences, which play a central role in optical spectroscopy, quantum information science, and quantum technology. To this end, we focus on cases where the electronic coherences predicted for the spin-boson benchmark model by direct application of various QC/MH methods are inaccurate. We find that similar to the case of electronic populations, combining the QC/MH methods with the GQME approach can dramatically improve the accuracy of the electronic coherences obtained via those methods. We also provide a comprehensive analysis of how the performance of GQMEs depends on the choice of projection operator and electronic basis and show that the accuracy and feasibility of the GQME approach can benefit from casting the GQME in terms of the eigen-basis of the observable of interest.
Collapse
Affiliation(s)
- Yudan Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ellen Mulvihill
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Ortega-Taberner C, O'Neill E, Butler E, Fux GE, Eastham PR. Unifying methods for optimal control in non-Markovian quantum systems via process tensors. J Chem Phys 2024; 161:124119. [PMID: 39344885 DOI: 10.1063/5.0226031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
The large dimensionality of environments is the limiting factor in applying optimal control to open quantum systems beyond the Markovian approximation. Various methods exist to simulate non-Markovian systems, which effectively reduce the environment to a number of active degrees of freedom. Here, we show that several of these methods can be expressed in terms of a process tensor in the form of a matrix-product-operator, which serves as a unifying framework to show how they can be used in optimal control and to compare their performance. The matrix-product-operator form provides a general scheme for computing gradients using back propagation and allows the efficiency of the different methods to be compared via the bond dimensions of their respective process tensors.
Collapse
Affiliation(s)
- Carlos Ortega-Taberner
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland
| | - Eoin O'Neill
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland
| | - Eoin Butler
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland
| | - Gerald E Fux
- The Abdus Salam International Center for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| | - P R Eastham
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, Ireland
| |
Collapse
|
4
|
Cai X, Feng Y, Ren J, Peng Y, Zheng Y. Quantum decoherence dynamics in stochastically fluctuating environments. J Chem Phys 2024; 161:044106. [PMID: 39041876 DOI: 10.1063/5.0217863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
We theoretically study the decoherence of a two-level quantum system coupled to noisy environments exhibiting linear and quadratic fluctuations within the framework of a stochastic Liouville equation. It is shown that the intrinsic energy levels of the quantum system renormalize under either the linear or quadratic influence of the environmental noise. In the case of quadratic dependence, the renormalization of the energy levels of the system emerges even if the environmental noise exhibits stationary statistical properties. This is in contrast to the case under linear influence, where the intrinsic energy levels of the system renormalize only if the environmental noise displays nonstationary statistics. We derive the analytical expressions of the decoherence function in the cases where the fluctuation of the frequency difference depends linearly and quadratically on the nonstationary Ornstein-Uhlenbeck noise (OUN) and random telegraph noise (RTN) processes, respectively. In the case of the linear dependence of the OUN, the environmental nonstationary statistical property can enhance the dynamical decoherence. However, the nonstationary statistics of the environmental noise can suppress the quantum decoherence in this case under the quadratic influence of the OUN. In the presence of the RTN, the quadratic influence of the environmental noise does not give rise to decoherence but only causes a determinate frequency renormalization in dynamical evolution. The environmental nonstationary statistical property can suppress the quantum decoherence of the case under the linear influence of the RTN.
Collapse
Affiliation(s)
- Xiangji Cai
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Yanyan Feng
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Jing Ren
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Yonggang Peng
- School of Physics, Shandong University, Jinan 250100, China
| | - Yujun Zheng
- School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Gu B. Diagrammatic representation and nonperturbative approximations of the exact time-convolutionless master equation. J Chem Phys 2024; 160:204113. [PMID: 38787536 DOI: 10.1063/5.0187191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The time-convolutionless master equation provides a general framework to model the non-Markovian dynamics of an open quantum system with a time-local generator. A diagrammatic representation is developed and proven for the perturbative expansion of the exact time-local generator for an open quantum system interacting with arbitrary environments. A truncation of the perturbation expansion leads to perturbative time-convolutionless quantum master equations. We further introduce a general iterative approach to construct nonperturbative approximations for the time-local generator as nested time-ordered exponential operators.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China and Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
6
|
Liu W, Chen ZH, Su Y, Wang Y, Dou W. Predicting rate kernels via dynamic mode decomposition. J Chem Phys 2023; 159:144110. [PMID: 37823462 DOI: 10.1063/5.0170512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Simulating dynamics of open quantum systems is sometimes a significant challenge, despite the availability of various exact or approximate methods. Particularly when dealing with complex systems, the huge computational cost will largely limit the applicability of these methods. In this work, we investigate the usage of dynamic mode decomposition (DMD) to evaluate the rate kernels in quantum rate processes. DMD is a data-driven model reduction technique that characterizes the rate kernels using snapshots collected from a small time window, allowing us to predict the long-term behaviors with only a limited number of samples. Our investigations show that whether the external field is involved or not, the DMD can give accurate prediction of the result compared with the traditional propagations, and simultaneously reduce the required computational cost.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310024 Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024 Zhejiang, China
| | - Zi-Hao Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Su
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenjie Dou
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310024 Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024 Zhejiang, China
- Department of Physics, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
7
|
Lyu N, Mulvihill E, Soley MB, Geva E, Batista VS. Tensor-Train Thermo-Field Memory Kernels for Generalized Quantum Master Equations. J Chem Theory Comput 2023; 19:1111-1129. [PMID: 36719350 DOI: 10.1021/acs.jctc.2c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The generalized quantum master equation (GQME) approach provides a rigorous framework for deriving the exact equation of motion for any subset of electronic reduced density matrix elements (e.g., the diagonal elements). In the context of electronic dynamics, the memory kernel and inhomogeneous term of the GQME introduce the implicit coupling to nuclear motion and dynamics of electronic density matrix elements that are projected out (e.g., the off-diagonal elements), allowing for efficient quantum dynamics simulations. Here, we focus on benchmark quantum simulations of electronic dynamics in a spin-boson model system described by various types of GQMEs. Exact memory kernels and inhomogeneous terms are obtained from short-time quantum-mechanically exact tensor-train thermo-field dynamics (TT-TFD) simulations and are compared with those obtained from an approximate linearized semiclassical method, allowing for assessment of the accuracy of these approximate memory kernels and inhomogeneous terms. Moreover, we have analyzed the computational cost of the full and reduced-dimensionality GQMEs. The scaling of the computational cost is dependent on several factors, sometimes with opposite scaling trends. The TT-TFD memory kernels can provide insights on the main sources of inaccuracies of GQME approaches when combined with approximate input methods and pave the road for the development of quantum circuits that implement GQMEs on digital quantum computers.
Collapse
Affiliation(s)
- Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ellen Mulvihill
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Micheline B Soley
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
8
|
Amati G, Saller MAC, Kelly A, Richardson JO. Quasiclassical approaches to the generalized quantum master equation. J Chem Phys 2022; 157:234103. [PMID: 36550031 DOI: 10.1063/5.0124028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The formalism of the generalized quantum master equation (GQME) is an effective tool to simultaneously increase the accuracy and the efficiency of quasiclassical trajectory methods in the simulation of nonadiabatic quantum dynamics. The GQME expresses correlation functions in terms of a non-Markovian equation of motion, involving memory kernels that are typically fast-decaying and can therefore be computed by short-time quasiclassical trajectories. In this paper, we study the approximate solution of the GQME, obtained by calculating the kernels with two methods: Ehrenfest mean-field theory and spin-mapping. We test the approaches on a range of spin-boson models with increasing energy bias between the two electronic levels and place a particular focus on the long-time limits of the populations. We find that the accuracy of the predictions of the GQME depends strongly on the specific technique used to calculate the kernels. In particular, spin-mapping outperforms Ehrenfest for all the systems studied. The problem of unphysical negative electronic populations affecting spin-mapping is resolved by coupling the method with the master equation. Conversely, Ehrenfest in conjunction with the GQME can predict negative populations, despite the fact that the populations calculated from direct dynamics are positive definite.
Collapse
Affiliation(s)
- Graziano Amati
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Aaron Kelly
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | |
Collapse
|
9
|
Su Y, Chen ZH, Zhu H, Wang Y, Han L, Xu RX, Yan Y. Electron Transfer under the Floquet Modulation in Donor-Bridge-Acceptor Systems. J Phys Chem A 2022; 126:4554-4561. [PMID: 35786902 DOI: 10.1021/acs.jpca.2c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron transfer (ET) processes are of broad interest in modern chemistry. With the advancements of experimental techniques, one may modulate the ET via such events as light-matter interactions. In this work, we study the ET under a Floquet modulation occurring in the donor-bridge-acceptor systems, with the rate kernels projected out from the exact dissipaton equation of motion formalism. This together with the Floquet theorem enables us to investigate the interplay between the intrinsic non-Markovianity and the driving periodicity. The observed rate kernel exhibits a Herzberg-Teller-like mechanism induced by the bridge fluctuation subject to effective modulation.
Collapse
Affiliation(s)
- Yu Su
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Hao Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haojie Zhu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu Han
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Dan X, Xu M, Yan Y, Shi Q. Generalized master equation for charge transport in a molecular junction: Exact memory kernels and their high order expansion. J Chem Phys 2022; 156:134114. [PMID: 35395901 DOI: 10.1063/5.0086663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a set of generalized master equations (GMEs) to study charge transport dynamics in molecular junctions using the Nakajima-Zwanzig-Mori projection operator approach. In the new GME, time derivatives of population on each quantum state of the molecule, as well as the tunneling current, are calculated as the convolution of time non-local memory kernels with populations on all system states. The non-Markovian memory kernels are obtained by combining the hierarchical equations of motion (HEOM) method and a previous derived Dyson relation for the exact kernel. A perturbative expansion of these memory kernels is then calculated using the extended HEOM developed in our previous work [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. By using the resonant level model and the Anderson impurity model, we study properties of the exact memory kernels and analyze convergence properties of their perturbative expansions with respect to the system-bath coupling strength and the electron-electron repulsive energy. It is found that exact memory kernels calculated from HEOM exhibit short memory times and decay faster than the population and current dynamics. The high order perturbation expansion of the memory kernels can give converged results in certain parameter regimes. The Padé and Landau-Zener resummation schemes are also found to give improved results over low order perturbation theory.
Collapse
Affiliation(s)
- Xiaohan Dan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Trivedi R, Malz D, Cirac JI. Convergence Guarantees for Discrete Mode Approximations to Non-Markovian Quantum Baths. PHYSICAL REVIEW LETTERS 2021; 127:250404. [PMID: 35029429 DOI: 10.1103/physrevlett.127.250404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Non-Markovian effects are important in modeling the behavior of open quantum systems arising in solid-state physics, quantum optics as well as in study of biological and chemical systems. The non-Markovian environment is often approximated by discrete bosonic modes, thus mapping it to a Lindbladian or Hamiltonian simulation problem. While systematic constructions of such modes have been previously proposed, the resulting approximation lacks rigorous and general convergence guarantees. In this Letter, we show that under some physically motivated assumptions on the system-environment interaction, the finite-time dynamics of the non-Markovian open quantum system computed with a sufficiently large number of modes is guaranteed to converge to the true result. Furthermore, we show that this approximation error typically falls off polynomially with the number of modes. Our results lend rigor to classical and quantum algorithms for approximating non-Markovian dynamics.
Collapse
Affiliation(s)
- Rahul Trivedi
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 Munich, Germany
| | - Daniel Malz
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 Munich, Germany
| | - J Ignacio Cirac
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany and Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 Munich, Germany
| |
Collapse
|
12
|
Brian D, Sun X. Generalized quantum master equation: A tutorial review and recent advances. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2109157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominikus Brian
- Division of Arts and Sciences, NYU Shanghai, Shanghai 200122, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York 10003, USA
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, Shanghai 200122, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York 10003, USA
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| |
Collapse
|
13
|
Head-Marsden K, Flick J, Ciccarino CJ, Narang P. Quantum Information and Algorithms for Correlated Quantum Matter. Chem Rev 2020; 121:3061-3120. [PMID: 33326218 DOI: 10.1021/acs.chemrev.0c00620] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Discoveries in quantum materials, which are characterized by the strongly quantum-mechanical nature of electrons and atoms, have revealed exotic properties that arise from correlations. It is the promise of quantum materials for quantum information science superimposed with the potential of new computational quantum algorithms to discover new quantum materials that inspires this Review. We anticipate that quantum materials to be discovered and developed in the next years will transform the areas of quantum information processing including communication, storage, and computing. Simultaneously, efforts toward developing new quantum algorithmic approaches for quantum simulation and advanced calculation methods for many-body quantum systems enable major advances toward functional quantum materials and their deployment. The advent of quantum computing brings new possibilities for eliminating the exponential complexity that has stymied simulation of correlated quantum systems on high-performance classical computers. Here, we review new algorithms and computational approaches to predict and understand the behavior of correlated quantum matter. The strongly interdisciplinary nature of the topics covered necessitates a common language to integrate ideas from these fields. We aim to provide this common language while weaving together fields across electronic structure theory, quantum electrodynamics, algorithm design, and open quantum systems. Our Review is timely in presenting the state-of-the-art in the field toward algorithms with nonexponential complexity for correlated quantum matter with applications in grand-challenge problems. Looking to the future, at the intersection of quantum information science and algorithms for correlated quantum matter, we envision seminal advances in predicting many-body quantum states and describing excitonic quantum matter and large-scale entangled states, a better understanding of high-temperature superconductivity, and quantifying open quantum system dynamics.
Collapse
Affiliation(s)
- Kade Head-Marsden
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Christopher J Ciccarino
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
14
|
Jang SJ. Fourth order expressions for the electronic absorption lineshape of molecular excitons. J Chem Phys 2019; 151:044110. [DOI: 10.1063/1.5100986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Seogjoo J. Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, USA and Ph.D. Programs in Chemistry and Physics, and Initiative for Theoretical Sciences, Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
| |
Collapse
|
15
|
He X, Liu J. A new perspective for nonadiabatic dynamics with phase space mapping models. J Chem Phys 2019; 151:024105. [DOI: 10.1063/1.5108736] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xin He
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Yan Y, Xu M, Liu Y, Shi Q. Theoretical study of charge carrier transport in organic molecular crystals using the Nakajima-Zwanzig-Mori generalized master equation. J Chem Phys 2019; 150:234101. [DOI: 10.1063/1.5096214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Meng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Yanying Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; and Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101407, China
| |
Collapse
|
17
|
Liu YY, Yan YM, Xu M, Song K, Shi Q. Exact generator and its high order expansions in time-convolutionless generalized master equation: Applications to spin-boson model and excitation energy transfer. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1806146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|