1
|
Serwatka T, Roy PN. Ground states of planar dipolar rotor chains with recurrent neural networks. J Chem Phys 2024; 160:224103. [PMID: 38856054 DOI: 10.1063/5.0205466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
In this contribution, we employ a recurrent neural network (RNN) architecture in a variational optimization to obtain the ground state of linear chains of planar, dipolar rotors. We test different local basis sets and discuss their impact on the sign structure of the many-body ground state wavefunction. It is demonstrated that the RNN ansatz we employ is able to treat systems with and without a sign problem in the ground state. For larger chains with up to 50 rotors, accurate properties, such as correlation functions and Binder parameters, are calculated. By employing quantum annealing, we show that precise entanglement properties can be obtained. All these properties allow one to identify a quantum phase transition between a paraelectric and a ferroelectric quantum phase.
Collapse
Affiliation(s)
- Tobias Serwatka
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Serwatka T, Roy PN. Quantum criticality in chains of planar rotors with dipolar interactions. J Chem Phys 2024; 160:104302. [PMID: 38465677 DOI: 10.1063/5.0195453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
In this work, we perform a density matrix renormalization group study of chains of planar rotors interacting via dipolar interactions. By exploring the ground state from weakly to strongly interacting rotors, we find the occurrence of a quantum phase transition between a disordered and a dipole-ordered quantum state. We show that the nature of the ordered state changes from ferroelectric to antiferroelectric when the relative orientation of the rotor planes varies and that this change requires no modification of the overall symmetry. The observed quantum phase transitions are characterized by critical exponents and central charges, which reveal different universality classes ranging from that of the (1 + 1)D Ising model to the 2D classical XY model.
Collapse
Affiliation(s)
- Tobias Serwatka
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Serwatka T, Roy PN. Quantum Criticality and Universal Behavior in Molecular Dipolar Lattices of Endofullerenes. J Phys Chem Lett 2023:5586-5591. [PMID: 37307244 DOI: 10.1021/acs.jpclett.3c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fullerene cages allow the confinement of single molecules and the construction of molecular assemblies whose properties strongly differ from those of free species. In this work, we employ the density-matrix renormalization group method to show that chains of fullerenes filled with polar molecules (LiF, HF, and H2O) can form dipole-ordered quantum phases. In symmetry broken environments, these ordered phases are ferroelectric, a property that makes them promising candidates for quantum devices. We demonstrate that for a given guest molecule, the occurrence of these quantum phases can be enforced or influenced either by changing the effective electric dipole moment or by isotopic substitution. In the ordered phase, all systems under consideration are characterized by universal behavior that depends only on the ratio of the effective electric dipole and of the rotational constant. A phase diagram is derived, and further molecules are proposed as candidates for dipole-ordered endofullerene chains.
Collapse
Affiliation(s)
- Tobias Serwatka
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Serwatka T, Roy PN. Ground state of asymmetric tops with DMRG: Water in one dimension. J Chem Phys 2022; 156:044116. [DOI: 10.1063/5.0078770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tobias Serwatka
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
5
|
Abstract
We introduce DMRG[FEAST], a new method for optimizing excited-state many-body wave functions with the density matrix renormalization group (DMRG) algorithm. Our approach applies the FEAST algorithm, originally designed for large-scale diagonalization problems, to matrix product state wave functions. We show that DMRG[FEAST] enables the stable optimization of both low- and high-energy eigenstates, therefore overcoming the limitations of state-of-the-art excited-state DMRG algorithms. We demonstrate the reliability of DMRG[FEAST] by calculating anharmonic vibrational excitation energies of molecules with up to 30 fully coupled degrees of freedom.
Collapse
Affiliation(s)
- Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Anna Klára Kelemen
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Sahoo T, Serwatka T, Roy PN. A path integral ground state approach for asymmetric top rotors with nuclear spin symmetry: Application to water chains. J Chem Phys 2021; 154:244305. [PMID: 34241367 DOI: 10.1063/5.0053051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A path integral ground state (PIGS) approach for the simulation of asymmetric top rotors is presented. The method is based on Monte Carlo sampling of angular degrees of freedom. A symmetry-adapted rotational density matrix is used to account for nuclear spin statistics. To illustrate the method, ground-state properties of collections of para-water molecules confined to a one-dimensional lattice are computed. Those include energetic and structural observables. An advantage of the PIGS method is that expectation values can be obtained directly since the square of the wavefunction is sampled during a simulation. To benchmark the method, ground state energies and orientational distributions are computed using exact diagonalization for a single para-water molecule in an external field using a finite basis of symmetric top eigenfunctions. Benchmark results are also provided for N = 2 para-water molecules pinned to lattice sites at various distances to sample the crossover from hydrogen bonding to the dipole-dipole interaction regime. Excellent agreement between the PIGS results and the finite basis set calculations is observed. A thorough analysis of the convergence in terms of the imaginary time propagation length and systematic Trotter error is performed. The PIGS approach is then applied to a chain of N = 11 water molecules, and an equation of state is constructed in terms of the intermolecular separation. Ordering effects are also studied, and a transition between hydrogen bonding to dipole-dipole alignment is observed. The method is scalable and can also be applied in higher dimensions.
Collapse
Affiliation(s)
- Tapas Sahoo
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tobias Serwatka
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
7
|
Mainali S, Gatti F, Iouchtchenko D, Roy PN, Meyer HD. Comparison of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method and the density matrix renormalization group (DMRG) for ground state properties of linear rotor chains. J Chem Phys 2021; 154:174106. [PMID: 34241072 DOI: 10.1063/5.0047090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We demonstrate the applicability of the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method to the problem of computing ground states of one-dimensional chains of linear rotors with dipolar interactions. Specifically, we successfully obtain energies, entanglement entropies, and orientational correlations that are in agreement with the Density Matrix Renormalization Group (DMRG), which has been previously used for this system. We find that the entropies calculated by ML-MCTDH for larger system sizes contain nonmonotonicity, as expected in the vicinity of a second-order quantum phase transition between ordered and disordered rotor states. We observe that this effect remains when all couplings besides nearest-neighbor are omitted from the Hamiltonian, which suggests that it is not sensitive to the rate of decay of the interactions. In contrast to DMRG, which is tailored to the one-dimensional case, ML-MCTDH (as implemented in the Heidelberg MCTDH package) requires more computational time and memory, although the requirements are still within reach of commodity hardware. The numerical convergence and computational demand of two practical implementations of ML-MCTDH and DMRG are presented in detail for various combinations of system parameters.
Collapse
Affiliation(s)
- Samrit Mainali
- Université Paris-Saclay, Institut des Sciences Moléculaires d'Orsay ISMO, UMR CNRS 8214, F-91405 Orsay, France
| | - Fabien Gatti
- Université Paris-Saclay, Institut des Sciences Moléculaires d'Orsay ISMO, UMR CNRS 8214, F-91405 Orsay, France
| | - Dmitri Iouchtchenko
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Hans-Dieter Meyer
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Marr A, Halverson T, Tripp A, Roy PN. Vibrational Raman Shifts of Spin Isomer Combinations of Hydrogen Dimers and Isotopologues. J Phys Chem A 2020; 124:6877-6888. [PMID: 32787001 DOI: 10.1021/acs.jpca.0c04092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Binding energies for para-para, ortho-para, and ortho-ortho hydrogen dimers (H2)2 are calculated using the six-dimensional (6D) interaction potential developed by Hinde [ J. Chem. Phys. 2008, 128, 154308]. The eigenstates of the dimers are computed by diagonalization using, as a basis, products of the rovibrational states of the monomers, a radial grid for the distance between the monomers, and spherical harmonics for the end-over-end rotation of the dimer. We describe the overall nuclear spin symmetry and use these properties to determine the relative population of various states, making use of a Boltzmann factor for each spin isomer to assess the effect of temperature. A predicted Raman spectrum in the Q(0) and Q(1) region of the hydrogen dimer is produced. To assess the accuracy of our model, we verify our produced shifts with experimental results obtained previously by Montero et al. [ Eur. Phys. J. D 2009, 52, 31-34] and find good agreement. These results are extended to other cases involving the deuterium (D2)2 and tritium dimer (T2)2 isotopologues, to predict Raman shifts.
Collapse
Affiliation(s)
- Adam Marr
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Thomas Halverson
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Austin Tripp
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
9
|
Sahoo T, Iouchtchenko D, Herdman CM, Roy PN. A path integral ground state replica trick approach for the computation of entanglement entropy of dipolar linear rotors. J Chem Phys 2020; 152:184113. [DOI: 10.1063/5.0004602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Tapas Sahoo
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dmitri Iouchtchenko
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - C. M. Herdman
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
10
|
Baiardi A, Reiher M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J Chem Phys 2020; 152:040903. [DOI: 10.1063/1.5129672] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
11
|
Larsson HR. Computing vibrational eigenstates with tree tensor network states (TTNS). J Chem Phys 2019; 151:204102. [DOI: 10.1063/1.5130390] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Henrik R. Larsson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
12
|
Baiardi A, Reiher M. Large-Scale Quantum Dynamics with Matrix Product States. J Chem Theory Comput 2019; 15:3481-3498. [DOI: 10.1021/acs.jctc.9b00301] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alberto Baiardi
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
13
|
Bačić Z. Perspective: Accurate treatment of the quantum dynamics of light molecules inside fullerene cages: Translation-rotation states, spectroscopy, and symmetry breaking. J Chem Phys 2018; 149:100901. [PMID: 30219006 DOI: 10.1063/1.5049358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this perspective, I review the current status of the theoretical investigations of the quantum translation-rotation (TR) dynamics and spectroscopy of light molecules encapsulated inside fullerenes, mostly C60 and C70. The methodologies developed in the past decade allow accurate quantum calculations of the TR eigenstates of one and two nanoconfined molecules and have led to deep insights into the nature of the underlying dynamics. Combining these bound-state methodologies with the formalism of inelastic neutron scattering (INS) has resulted in the novel and powerful approach for the quantum calculation of the INS spectra of a diatomic molecule in a nanocavity with an arbitrary geometry. These simulations have not only become indispensable for the interpretation and assignment of the experimental spectra but are also behind the surprising discovery of the INS selection rule for diatomics in near-spherical nanocavities. Promising directions for future research are discussed.
Collapse
Affiliation(s)
- Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
| |
Collapse
|