1
|
Zhang XL, Yang SB, Hou D, Li H. An intramolecular vibrationally excited intermolecular potential energy surface and predicted 2OH overtone spectroscopy of H 2O-Kr. Phys Chem Chem Phys 2023; 25:29940-29950. [PMID: 37902029 DOI: 10.1039/d3cp04126c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
A new five-dimensional potential energy surface (PES) for H2O-Kr which explicitly includes the intramolecular 2OH overtone state of the H2O monomer is presented. The intermolecular potential energies were evaluated using explicitly correlated coupled cluster theory [CCSD(T)-F12] with a large basis set. Four vibrationally averaged analytical intermolecular PESs for H2O-Kr with H2O molecules in its |00+〉, |02+〉, |02-〉, and |11+〉 states are obtained by fitting to the multi-dimensional Morse/Long-Range potential function form. Each vibrationally averaged PES fitted to 578 points has root-mean-square (RMS) deviations smaller than 0.14 cm-1 and requires only 58 parameters. The combined radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm were employed to calculate the rovibrational energy levels for |00+〉, |02+〉, |02-〉, and |11+〉 states of the H2O-Kr complexes. The calculated |02-〉Πf/e(101) ← |00+〉Σe(000) and |02+〉Πf/e(110) ← |00+〉Σe(101) infrared transitions are in excellent agreement with the experimental values with RMS discrepancies being only 0.007 and 0.016 cm-1, respectively. These analytical PESs can be used to provide reliable theoretical guidance for future infrared overtone spectroscopy of H2O-Kr.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Shu-Bin Yang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Dan Hou
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, P. R. China.
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China.
| |
Collapse
|
2
|
Li Y, Zhai Y, Li H. MLRNet: Combining the Physics-Motivated Potential Models with Neural Networks for Intermolecular Potential Energy Surface Construction. J Chem Theory Comput 2023; 19:1421-1431. [PMID: 36826225 DOI: 10.1021/acs.jctc.2c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A physics-based machine learning model called MLRNet has been developed to construct the high-accuracy two-body intermolecular potential energy surface (IPES). The outputs of the neural network are integrated into the physically realistic Morse/long-range (MLR) function, which ensures that the MLRNet has meaningful extrapolation at both short and long ranges and solves the asymptotic problem in common neural network potential (NNP) models. The neural network representation of the MLR parameters is more flexible and more efficient than the polynomial expansion in the conventional mdMLR model, especially for systems containing nonrigid monomer(s). The present work illustrates the basic framework of the current MLRNet model, including (i) how to combine the physically meaningful MLR function with different possible NN structures, (ii) the preservation of permutation symmetry, and (iii) the predetermination of the long-range function uLR. We choose two realistic systems to demonstrate the performance of MLRNet: the three-dimensional IPES of CO2-He including the CO2 antisymmetric vibration Q3 and the six-dimensional IPES of the H2O-Ar system. In both cases, the fitting errors of the MLRNet are several times smaller than those of the conventional mdMLR model. Both short-range and long-range extrapolation tests were performed to illustrate the extrapolation ability of the MLRNet and its damping function version. Moreover, for the 6-D H2O-Ar system, the MLRNet only needs 1596 trainable parameters, which is almost equal to the number needed for the 5-D mdMLR model (1509) and half that needed for the PIP-NN model (3501) within similar accuracy, which illustrates the model efficiency in high-dimensional IPES fitting.
Collapse
Affiliation(s)
- You Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| |
Collapse
|
3
|
DuránCaballero L, Schran C, Brieuc F, Marx D. Neural network interaction potentials for para-hydrogen with flexible molecules. J Chem Phys 2022; 157:074302. [DOI: 10.1063/5.0100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The study of molecular impurities in para-hydrogen ( pH2) clusters is key to push forward our understanding of intra- and intermolecular interactions, including their impact on the superfluid response of this bosonic quantum solvent. This includes tagging with only one or very few pH2, the microsolvation regime for intermediate particle numbers, and matrix isolation with many solvent molecules. However, the fundamental coupling between the bosonic pH2 environment and the (ro-)vibrational motion of molecular impurities remains poorly understood. Quantum simulations can, in principle, provide the necessary atomistic insight, but they require very accurate descriptions of the involved interactions. Here, we present a data-driven approach for the generation of impurity⋯ pH2 interaction potentials based on machine learning techniques, which retain the full flexibility of the dopant species. We employ the well-established adiabatic hindered rotor (AHR) averaging technique to include the impact of the nuclear spin statistics on the symmetry-allowed rotational quantum numbers of pH2. Embedding this averaging procedure within the high-dimensional neural network potential (NNP) framework enables the generation of highly accurate AHR-averaged NNPs at coupled cluster accuracy, namely, explicitly correlated coupled cluster single, double, and scaled perturbative triples, CCSD(T*)-F12a/aVTZcp, in an automated manner. We apply this methodology to the water and protonated water molecules as representative cases for quasi-rigid and highly flexible molecules, respectively, and obtain AHR-averaged NNPs that reliably describe the corresponding H2O⋯ pH2 and H3O+⋯ pH2 interactions. Using path integral simulations, we show for the hydronium cation, H3O+, that umbrella-like tunneling inversion has a strong impact on the first and second pH2 microsolvation shells. The automated and data-driven nature of our protocol opens the door to the study of bosonic pH2 quantum solvation for a wide range of embedded impurities.
Collapse
Affiliation(s)
- Laura DuránCaballero
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christoph Schran
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Fabien Brieuc
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
4
|
Conquest OJ, Roman T, Marianov A, Kochubei A, Jiang Y, Stampfl C. Calculating Entropies of Large Molecules in Aqueous Phase. J Chem Theory Comput 2021; 17:7753-7771. [PMID: 34860016 DOI: 10.1021/acs.jctc.1c00848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Entropy benchmarking of different sized molecules in aqueous phase is carried out for known solvation models, where we compare geometry and solvation cavity packing parameters, which allows us to improve the accuracy of the obtained entropy values using empirical corrections. A comparison of solvation entropy models is conducted for a benchmarking set of 56 molecules, showing how an accurate description of cavitation entropy and its hindrance on other entropy values is important for large-sized solute molecules. Finally, we compare reaction free energies with entropies calculated using the most accurate solvation model considered, where we demonstrate a significant improvement in the accuracy relative to experimental values.
Collapse
Affiliation(s)
- Oliver J Conquest
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tanglaw Roman
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia.,Flinders Institute for Nanoscale Science and Technology, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Aleksei Marianov
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Alena Kochubei
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Yijao Jiang
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Catherine Stampfl
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Marr A, Halverson T, Tripp A, Roy PN. Vibrational Raman Shifts of Spin Isomer Combinations of Hydrogen Dimers and Isotopologues. J Phys Chem A 2020; 124:6877-6888. [PMID: 32787001 DOI: 10.1021/acs.jpca.0c04092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Binding energies for para-para, ortho-para, and ortho-ortho hydrogen dimers (H2)2 are calculated using the six-dimensional (6D) interaction potential developed by Hinde [ J. Chem. Phys. 2008, 128, 154308]. The eigenstates of the dimers are computed by diagonalization using, as a basis, products of the rovibrational states of the monomers, a radial grid for the distance between the monomers, and spherical harmonics for the end-over-end rotation of the dimer. We describe the overall nuclear spin symmetry and use these properties to determine the relative population of various states, making use of a Boltzmann factor for each spin isomer to assess the effect of temperature. A predicted Raman spectrum in the Q(0) and Q(1) region of the hydrogen dimer is produced. To assess the accuracy of our model, we verify our produced shifts with experimental results obtained previously by Montero et al. [ Eur. Phys. J. D 2009, 52, 31-34] and find good agreement. These results are extended to other cases involving the deuterium (D2)2 and tritium dimer (T2)2 isotopologues, to predict Raman shifts.
Collapse
Affiliation(s)
- Adam Marr
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Thomas Halverson
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Austin Tripp
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
6
|
Wang L, Zhang XL, Zhai Y, Nooijen M, Li H. Explicitly correlated ab initio potential energy surface and predicted rovibrational spectra for H 2O-N 2 and D 2O-N 2 complexes. J Chem Phys 2020; 153:054303. [PMID: 32770926 DOI: 10.1063/5.0009098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
An ab initio intermolecular potential energy surface (PES) for the van der Waals complex of H2O-N2 that explicitly incorporates the intramolecular Q2 bending normal mode of the H2O monomer is presented. The electronic structure computations have been carried out at the explicitly correlated coupled cluster theory [CCSD(T)-F12] with an augmented correlation-consistent triple zeta basis set and an additional bond function. Analytic five-dimensional intermolecular PESs for ν2(H2O) = 0 and 1 are obtained by fitting to the multi-dimensional Morse/long-range potential function form. These fits to 40 890 points have the root-mean-square (rms) discrepancy of 0.88 cm-1 for interaction energies less than 2000.0 cm-1. The resulting vibrationally averaged PESs provide good representations of the experimental microwave and infrared data: for microwave transitions of H2O-N2, the rms discrepancy is only 0.0003 cm-1, and for infrared transitions of the A1 symmetry of the H2O(ν2 = 1 ← 0)-N2, the rms discrepancy is 0.001 cm-1. The calculated infrared band origin shifts associated with the ν2 bending vibration of water are 2.210 cm-1 and 1.323 cm-1 for H2O-N2 and D2O-N2, respectively, in good agreement with the experimental values of 2.254 cm-1 and 1.266 cm-1. The benchmark tests and comparisons of the predicted spectral properties are carried out between CCSD(T)-F12a and CCSD(T)-F12b approaches.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Xiao-Long Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Marcel Nooijen
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| |
Collapse
|
7
|
Hou D, Yang JT, Zhai Y, Zhang XL, Liu JM, Li H. Analytic intermolecular potential energy surface and first-principles prediction of the rotational profiles for a symmetric top ion-atom complex: A case study of H 3O +-Ar. J Chem Phys 2020; 152:214302. [PMID: 32505168 DOI: 10.1063/5.0007691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We presented the first three-dimensional (3D) ab initio intermolecular potential energy surface (PES) for the H3O+-Ar complex. The electronic structure computations were carried out at the explicitly correlated coupled cluster theory-F12 with an augmented correlation-consistent triple zeta basis set. Analytic 3D PES was obtained by least-squares fitting the multi-dimensional Morse/Long-Range (mdMLR) potential model to interaction energies, where the mdMLR function form was applied to the nonlinear ion-atom case for the first time. The 3D PES fitting to 1708 points has root-mean-square deviations of 0.19 cm-1 with only 108 parameters for interaction energies less than 500 cm-1. With the 3D PES of the H3O+-Ar complex, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. The rotational profiles of the O-H anti-stretching vibrational bands of v3 +(S)←0+ and v3 -(A)←0- for the H3O+-Ar complex were predicted and were in good agreement with the experimental results.
Collapse
Affiliation(s)
- Dan Hou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Ji-Tai Yang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Xiao-Long Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Jing-Min Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| |
Collapse
|
8
|
Zhang XL, Ma YT, Zhai Y, Li H. Full quantum calculation of the rovibrational states and intensities for a symmetric top-linear molecule dimer: Hamiltonian, basis set, and matrix elements. J Chem Phys 2019; 151:074301. [PMID: 31438702 DOI: 10.1063/1.5115496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rovibrational energy levels and intensities of the CH3F-H2 dimer have been obtained using our recent global intermolecular potential energy surface [X.-L. Zhang et al., J. Chem. Phys. 148, 124302 (2018)]. The Hamiltonian, basis set, and matrix elements are derived and given for a symmetric top-linear molecule complex. This approach to the generation of energy levels and wavefunctions can readily be utilized for studying the rovibrational spectra of other van der Waals complexes composed of a symmetric top molecule and a linear molecule, and may readily be extended to other complexes of nonlinear molecules and linear molecules. To confirm our method, the rovibrational levels of the H2O-H2 dimer have been computed and shown to be in good agreement with experiment and with previous theoretical results. The rovibrational Schrödinger equation has been solved using a Lanczos algorithm together with an uncoupled product basis set. As expected, dimers containing ortho-H2 are more strongly bound than dimers containing para-H2. Energies and wavefunctions of the discrete rovibrational levels of CH3F-paraH2 complexes obtained from the direct vibrationally averaged 5-dimensional potentials are in good agreement with the results of the reduced 3-dimensional adiabatic-hindered-rotor (AHR) approximation. Accurate calculations of the transition line strengths for the orthoCH3F-paraH2 complex are also carried out, and are consistent with results obtained using the AHR approximation. The microwave spectrum associated with the orthoCH3F-orthoH2 dimer has been predicted for the first time.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yong-Tao Ma
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yu Zhai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| |
Collapse
|
9
|
Zhang XL, Ma YT, Zhai Y, Li H. Erratum: "Analytic Morse/long-range potential energy surfaces and 'adiabatic-hindered-rotor' treatment for a symmetric top-linear molecule dimer: A case study of CH 3F-H 2" [J. Chem. Phys. 148, 124302 (2018)]. J Chem Phys 2019; 150:209901. [PMID: 31153190 DOI: 10.1063/1.5105344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xiao-Long Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China
| | - Yong-Tao Ma
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China
| | - Yu Zhai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China
| |
Collapse
|
10
|
Zhai Y, Li H, Le Roy RJ. Constructing high-accuracy intermolecular potential energy surface with multi-dimension Morse/Long-Range model. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1429687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yu Zhai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Robert J. Le Roy
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| |
Collapse
|