1
|
López Peña HA, Shusterman JM, Dalkiewicz C, McPherson SL, Dunstan C, Sangroula K, Lao KU, Tibbetts KM. Photodissociation Dynamics of the Highly Stable ortho-Nitroaniline Cation. J Phys Chem A 2024; 128:1634-1645. [PMID: 38411108 PMCID: PMC10926099 DOI: 10.1021/acs.jpca.3c08364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
0rtho-Nitroaniline (ONA) is a model for the insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) that shares strong hydrogen bonding character between adjacent nitro and amino groups. This work reports femtosecond time-resolved mass spectrometry (FTRMS) measurements and theoretical calculations that explain the high stability of the ONA cation compared with related nitroaromatic molecules. Ab initio calculations found that the lowest-lying electronic excited state of the ONA cation, D1, lies more than 2 eV above the ground state, and the energetic barriers to rearrangement and dissociation reactions exceed this D1 energy. These theoretical results were confirmed by FTRMS pump-probe measurements showing that (1) fragment ions represented less than 30% of the total ion yield when a 1014 W cm-2, 1300 nm, 20 fs pump pulse was used to ionize ONA; and (2) 3.1 eV (400 nm) photons were required to induce dissociation of the ONA cation. Stronger coupling between the ground D0 and excited D4 states of the ONA cation at the geometry of neutral ONA resulted in a transient enhancement of fragment ion yields at <300 fs pump-probe delay times, prior to relaxation of the ONA cation to its optimal geometry.
Collapse
Affiliation(s)
- Hugo A. López Peña
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| | - Jacob M. Shusterman
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| | - Clayton Dalkiewicz
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| | - Shane L. McPherson
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| | - Christine Dunstan
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| | - Kunjal Sangroula
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| | - Ka Un Lao
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
2
|
Shusterman JM, Gutsev GL, López Peña HA, Ramachandran BR, Tibbetts KM. Coulomb Explosion Dynamics of Multiply Charged para-Nitrotoluene Cations. J Phys Chem A 2022; 126:6617-6627. [PMID: 36126364 DOI: 10.1021/acs.jpca.2c04395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work explores Coulomb explosion (CE) dissociation pathways in multiply charged cations of para-nitrotoluene (PNT), a model compound for nitroaromatic energetic molecules. Experiments using strong-field ionization and mass spectrometry indicate that metastable cations PNT2+ and PNT3+ undergo CE to produce NO2+ and NO+. The experimentally measured kinetic energy release from CE upon formation of NO2+ and NO+ agrees qualitatively with the kinetic energy release predicted by computations of the reaction pathways in PNT2+ and PNT3+ using density functional theory (DFT). Both DFT computations and mass spectrometry identified additional products from CE of highly charged PNTq+ cations with q > 3. The dynamical timescales required for direct CE of PNT2+ and PNT3+ to produce NO2+ were estimated to be 200 and 90 fs, respectively, using ultrafast disruptive probing measurements.
Collapse
Affiliation(s)
- Jacob M Shusterman
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Gennady L Gutsev
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Hugo A López Peña
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - B Ramu Ramachandran
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
3
|
López Peña HA, Shusterman JM, Ampadu Boateng D, Lao KU, Tibbetts KM. Coherent Control of Molecular Dissociation by Selective Excitation of Nuclear Wave Packets. Front Chem 2022; 10:859095. [PMID: 35449589 PMCID: PMC9016217 DOI: 10.3389/fchem.2022.859095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
We report on pump-probe control schemes to manipulate fragmentation product yields in p-nitrotoluene (PNT) cation. Strong field ionization of PNT prepares the parent cation in the ground electronic state, with coherent vibrational excitation along two normal modes: the C–C–N–O torsional mode at 80 cm−1 and the in-plane ring-stretching mode at 650 cm−1. Both vibrational wave packets are observed as oscillations in parent and fragment ion yields in the mass spectrum upon optical excitation. Excitation with 650 nm selectively fragments the PNT cation into C7H7+, whereas excitation with 400 nm selectively produces C5H5+ and C3H3+. In both cases the ion yield oscillations result from torsional wave packet excitation, but 650 and 400 nm excitation produce oscillations with opposite phases. Ab initio calculations of the ground and excited electronic potential energy surfaces of PNT cation along the C–C–N–O dihedral angle reveal that 400 nm excitation accesses an allowed transition from D0 to D6 at 0° dihedral angle, whereas 650 nm excitation accesses a strongly allowed transition from D0 to D4 at a dihedral angle of 90°. This ability to access different electronic excited states at different locations along the potential energy surface accounts for the selective fragmentation observed with different probe wavelengths. The ring-stretching mode, only observed using 800 nm excitation, is attributed to a D0 to D2 transition at a geometry with 90° dihedral angle and elongated C–N bond length. Collectively, these results demonstrate that strong field ionization induces multimode coherent excitation and that the vibrational wave packets can be excited with specific photon energies at different points on their potential energy surfaces to induce selective fragmentation.
Collapse
|
4
|
Yoshinaga K, Hao NV, Imasaka T, Imasaka T. Miniature time-of-flight mass analyzer for use in combination with a compact highly-repetitive femtosecond laser ionization source. Anal Chim Acta 2022; 1203:339673. [DOI: 10.1016/j.aca.2022.339673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
|
5
|
Singh V, López Peña HA, Shusterman JM, Vindel-Zandbergen P, Tibbetts KM, Matsika S. Conformer-Specific Dissociation Dynamics in Dimethyl Methylphosphonate Radical Cation. Molecules 2022; 27:2269. [PMID: 35408667 PMCID: PMC9000782 DOI: 10.3390/molecules27072269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
The dynamics of the dimethyl methylphosphonate (DMMP) radical cation after production by strong field adiabatic ionization have been investigated. Pump-probe experiments using strong field 1300 nm pulses to adiabatically ionize DMMP and a 800 nm non-ionizing probe induce coherent oscillations of the parent ion yield with a period of about 45 fs. The yields of two fragments, PO2C2H7+ and PO2CH4+, oscillate approximately out of phase with the parent ion, but with a slight phase shift relative to each other. We use electronic structure theory and nonadiabatic surface hopping dynamics to understand the underlying dynamics. The results show that while the cation oscillates on the ground state along the P=O bond stretch coordinate, the probe excites population to higher electronic states that can lead to fragments PO2C2H7+ and PO2CH4+. The computational results combined with the experimental observations indicate that the two conformers of DMMP that are populated under experimental conditions exhibit different dynamics after being excited to the higher electronic states of the cation leading to different dissociation products. These results highlight the potential usefulness of these pump-probe measurements as a tool to study conformer-specific dynamics in molecules of biological interest.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA;
| | - Hugo A. López Peña
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (H.A.L.P.); (J.M.S.); (K.M.T.)
| | - Jacob M. Shusterman
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (H.A.L.P.); (J.M.S.); (K.M.T.)
| | | | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA; (H.A.L.P.); (J.M.S.); (K.M.T.)
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA;
| |
Collapse
|
6
|
McPherson SL, Shusterman JM, López Peña HA, Ampadu Boateng D, Tibbetts KM. Quantitative Analysis of Nitrotoluene Isomer Mixtures Using Femtosecond Time-Resolved Mass Spectrometry. Anal Chem 2021; 93:11268-11274. [PMID: 34347440 DOI: 10.1021/acs.analchem.1c02245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Discrimination of isomers in a mixture is a subject of ongoing interest in biology, pharmacology, and forensics. We demonstrate that femtosecond time-resolved mass spectrometry (FTRMS) effectively quantifies mixtures of ortho-, para-, and meta-nitrotoluenes, the first two of which are common explosive degradation products. The key advantage of the FTRMS approach to mixture quantification lies in the ability of the pump-probe laser control scheme to capture distinct fragmentation dynamics of each nitrotoluene cation isomer on femtosecond timescales, thereby allowing for discrimination of the isomers using only the signal of the parent molecular ion at m/z 137. Upon measurement of reference dynamics of each individual isomer, the molar fractions of binary and ternary mixtures can be predicted to within ∼5 and ∼7% accuracy, respectively.
Collapse
Affiliation(s)
- Shane L McPherson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Jacob M Shusterman
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hugo A López Peña
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Derrick Ampadu Boateng
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
7
|
Zhou L, Liu Y, Sun T, Yin H, Zhao Y, Lv H, Xu H. Strong Field Ionization-Photofragmentation on Ultrafast Evolution of Electronic States of Toluene Cations. J Phys Chem A 2021; 125:2095-2100. [PMID: 33662205 DOI: 10.1021/acs.jpca.0c11547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrafast time-resolved strong field ionization-photofragmentation (SFI-PF) has emerged as a useful method for investigation of dynamics of molecular cations. Here we perform a SFI-PF study on the electronic states of toluene cations. By measuring the ion yields as a function of delay time, we obtain the transients of both parent and daughter ions, which show ultrafast decays and out-of-phase oscillations. The results provide the first experimental evidence of D1-D0 ultrafast relaxation of toluene cations occurring in about 530 fs and indicate coincident resonance between the vibrational states in D1 and D0 leading to oscillations with a period of about 2.05 ps. Our study should shed some light on the ultrafast photochemistry involving complex molecular cations.
Collapse
Affiliation(s)
- Longxing Zhou
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yang Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Tian Sun
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yiwen Zhao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Hang Lv
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Haifeng Xu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Yang M, Liao C, Tang C, Zhang P, Huang Z, Li J. Theoretical studies on the initial reaction kinetics and mechanisms of p-, m- and o-nitrotoluene. Phys Chem Chem Phys 2021; 23:4658-4668. [PMID: 33595017 DOI: 10.1039/d0cp05935h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential energy surfaces (PESs) of three nitrotoluene isomers, such as p-nitrotoluene, m-nitrotoluene, and o-nitrotoluene, have been theoretically built at the CCSD(T)/CBS level. The geometries of reactants, transition states (TSs) and products are optimized at the B3LYP/6-311++G(d,p) level. Results show that reactions of -NO2 isomerizing to ONO, and C-NO2 bond dissociation play important roles among all of the initial channels for p-nitrotoluene and m-nitrotoluene, and that the H atom migration and C-NO2 bond dissociation are dominant reactions for o-nitrotoluene. In addition, there exist pathways for three isomer conversions, but with high energy barriers. Rate constant calculations and branching ratio analyses further demonstrate that the isomerization reactions of O transfer are prominent at low to intermediate temperatures, whereas the direct C-NO2 bond dissociation reactions prevail at high temperatures for p-nitrotoluene and m-nitrotoluene, and that H atom migration is a predominant reaction for o-nitrotoluene, while C-NO2 bond dissociation becomes important by increasing the temperature.
Collapse
Affiliation(s)
- Meng Yang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Caiyue Liao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Chenglong Tang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Peng Zhang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zuohua Huang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Jianling Li
- School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
9
|
López Peña HA, Ampadu Boateng D, McPherson SL, Tibbetts KM. Using computational chemistry to design pump–probe schemes for measuring nitrobenzene radical cation dynamics. Phys Chem Chem Phys 2021; 23:13338-13348. [DOI: 10.1039/d1cp00360g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Computed potential energy surfaces of the nitrobenzene cation predict suitable excitation conditions for enhancing ion yield oscillations in time-resolved measurements.
Collapse
|
10
|
Gutsev GL, McPherson SL, López Peña HA, Boateng DA, Gutsev LG, Ramachandran BR, Tibbetts KM. Dissociation of Singly and Multiply Charged Nitromethane Cations: Femtosecond Laser Mass Spectrometry and Theoretical Modeling. J Phys Chem A 2020; 124:7427-7438. [PMID: 32841027 DOI: 10.1021/acs.jpca.0c06545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dissociation pathways of singly- and multiply charged gas-phase nitromethane cations were investigated with strong-field laser photoionization mass spectrometry and density functional theory computations. There are multiple isomers of the singly charged nitromethane radical cation, several of which can be accessed by rearrangement of the parent CH3-NO2 structure with low energy barriers. While direct cleavage of the C-N bond from the parent nitromethane cation produces NO2+ and CH3+, rearrangement prior to dissociation accounts for fragmentation products including NO+, CH2OH+, and CH2NO+. Extensive Coulomb explosion in fragment ions observed at high laser intensity indicates that rapid dissociation of multiply charged nitromethane cations produces additional species such as CH2+, H+, and NO22+. On the basis of analysis of Coulomb explosion in the mass spectral signals and pathway calculations, sufficiently intense laser fields can remove four or more electrons from nitromethane.
Collapse
Affiliation(s)
- Gennady L Gutsev
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Shane L McPherson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Hugo A López Peña
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Derrick Ampadu Boateng
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Lavrenty G Gutsev
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, United States.,Institute of Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Moscow District 142432, Russia
| | - B Ramu Ramachandran
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
11
|
Gutsev GL, López Peña HA, McPherson SL, Boateng DA, Ramachandran BR, Gutsev LG, Tibbetts KM. From Neutral Aniline to Aniline Trication: A Computational and Experimental Study. J Phys Chem A 2020; 124:3120-3134. [PMID: 32233368 DOI: 10.1021/acs.jpca.0c00686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report density functional theory computations and photoionization mass spectrometry measurements of aniline and its positively charged ions. The geometrical structures and properties of the neutral and singly, doubly, and triply positively charged aniline are computed using density functional theory with the generalized gradient approximation. At each charge, there are multiple isomers closely spaced in total energy. Whereas the lowest energy states of both neutral and cation have the same topology C6H5-NH2, the dication and trication have the C5NH5-CH2 topology with the nitrogen atom in the meta- and para-positions, respectively. We compute the dissociation pathways of all four charge states to NH or NH+ and NH2 or NH2+, depending on the initial charge of the aniline precursor. Dissociation leading to the formation of NH (from the neutral and cation) and NH+ (from the dication and trication) proceeds through multiple transition states. On the contrary, the dissociation of NH2 (from the neutral and cation) and NH2+ (from the dication and trication) is found to proceed without an activation energy barrier. The trication was found to be stable toward abstraction on NH+ and NH2+ by 0.96 and 0.18 eV, respectively, whereas the proton affinity of the trication is substantially higher, 1.98 eV. The mass spectra of aniline were recorded with 1300 nm, 20 fs pulses over the peak intensity range of 1 × 1013 to 3 × 1014 W cm-2. The analysis of the mass spectra suggests high stability of both dication and trication to fragmentation. The formation of the fragment NH+ and NH2+ ions is found to proceed via Coulomb explosion.
Collapse
Affiliation(s)
- G L Gutsev
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - H A López Peña
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - S L McPherson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - D Ampadu Boateng
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - B R Ramachandran
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - L G Gutsev
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, United States.,Institute of Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka, Moscow District 142432, Russia
| | - K M Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
12
|
Moore Tibbetts K. Coherent Vibrational and Dissociation Dynamics of Polyatomic Radical Cations. Chemistry 2019; 25:8431-8439. [DOI: 10.1002/chem.201900363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 01/26/2023]
|
13
|
Ampadu Boateng D, Word MD, Tibbetts KM. Probing Coherent Vibrations of Organic Phosphonate Radical Cations with Femtosecond Time-Resolved Mass Spectrometry. Molecules 2019; 24:E509. [PMID: 30708973 PMCID: PMC6384684 DOI: 10.3390/molecules24030509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Organic phosphates and phosphonates are present in a number of cellular components that can be damaged by exposure to ionizing radiation. This work reports femtosecond time-resolved mass spectrometry (FTRMS) studies of three organic phosphonate radical cations that model the DNA sugar-phosphate backbone: dimethyl methylphosphonate (DMMP), diethyl methylphosphonate (DEMP), and diisopropyl methylphosphonate (DIMP). Upon ionization, each molecular radical cation exhibits unique oscillatory dynamics in its ion yields resulting from coherent vibrational excitation. DMMP has particularly well-resolved 45 fs ( 732 ± 28 cm - 1 ) oscillations with a weak feature at 610⁻650 cm - 1 , while DIMP exhibits bimodal oscillations with a period of ∼55 fs and two frequency features at 554 ± 28 and 670⁻720 cm - 1 . In contrast, the oscillations in DEMP decay too rapidly for effective resolution. The low- and high-frequency oscillations in DMMP and DIMP are assigned to coherent excitation of the symmetric O⁻P⁻O bend and P⁻C stretch, respectively. The observation of the same ionization-induced coherently excited vibrations in related molecules suggests a possible common excitation pathway in ionized organophosphorus compounds of biological relevance, while the distinct oscillatory dynamics in each molecule points to the potential use of FTRMS to distinguish among fragment ions produced by related molecules.
Collapse
Affiliation(s)
| | - Mi'Kayla D Word
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | | |
Collapse
|
14
|
Ampadu Boateng D, Word MD, Gutsev LG, Jena P, Tibbetts KM. Conserved Vibrational Coherence in the Ultrafast Rearrangement of 2-Nitrotoluene Radical Cation. J Phys Chem A 2019; 123:1140-1152. [DOI: 10.1021/acs.jpca.8b11723] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Derrick Ampadu Boateng
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mi’Kayla D. Word
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Lavrenty G. Gutsev
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Katharine Moore Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
15
|
Ampadu Boateng D, Tibbetts KM. Measurement of Ultrafast Vibrational Coherences in Polyatomic Radical Cations with Strong-Field Adiabatic Ionization. J Vis Exp 2018. [PMID: 30124651 DOI: 10.3791/58263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We present a pump-probe method for preparing vibrational coherences in polyatomic radical cations and probing their ultrafast dynamics. By shifting the wavelength of the strong-field ionizing pump pulse from the commonly used 800 nm into the near-infrared (1200-1600 nm), the contribution of adiabatic electron tunneling to the ionization process increases relative to multiphoton absorption. Adiabatic ionization results in predominant population of the ground electronic state of the ion upon electron removal, which effectively prepares a coherent vibrational state ("wave packet") amenable to subsequent excitation. In our experiments, the coherent vibrational dynamics are probed with a weak-field 800 nm pulse and the time-dependent yields of dissociation products measured in a time-of-flight mass spectrometer. We present the measurements on the molecule dimethyl methylphosphonate (DMMP) to illustrate how using 1500 nm pulses for excitation enhances the amplitude of coherent oscillations in ion yields by a factor of 10 as compared to 800 nm pulses. This protocol may be implemented in existing pump-probe setups through the incorporation of an optical parametric amplifier (OPA) for wavelength conversion.
Collapse
|
16
|
Ampadu Boateng D, Gutsev GL, Jena P, Tibbetts KM. Erratum: “Dissociation dynamics of 3- and 4-nitrotoluene radical cations: Coherently driven C–NO 2 bond homolysis” [J. Chem. Phys. 148, 134305 (2018)]. J Chem Phys 2018; 148:179901. [DOI: 10.1063/1.5036928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Derrick Ampadu Boateng
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | - Gennady L. Gutsev
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | | |
Collapse
|