1
|
Hu T, Ren Y, Li W. Annihilation Kinetics of an Interacting 5/7-Dislocation Pair in the Hexagonal Cylinders of AB Diblock Copolymer. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianyi Hu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yongzhi Ren
- Key Lab of In-fiber Integrated Optics, Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Dreyer O, Ibbeken G, Schneider L, Blagojevic N, Radjabian M, Abetz V, Müller M. Simulation of Solvent Evaporation from a Diblock Copolymer Film: Orientation of the Cylindrical Mesophase. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oliver Dreyer
- Institut für Membranforschung, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Gregor Ibbeken
- Institut für Theoretische Physik, Georg-August Universität Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
- Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Ludwig Schneider
- Institut für Theoretische Physik, Georg-August Universität Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Niklas Blagojevic
- Institut für Theoretische Physik, Georg-August Universität Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Maryam Radjabian
- Institut für Membranforschung, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Volker Abetz
- Institut für Membranforschung, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
- Institut für Physikalische Chemie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany
| | - Marcus Müller
- Institut für Theoretische Physik, Georg-August Universität Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Ren Y, Li W. Droplet-like Defect Annihilation Mechanisms in Hexagonal Cylinder-Forming Block Copolymers. ACS Macro Lett 2022; 11:510-516. [PMID: 35575331 DOI: 10.1021/acsmacrolett.1c00670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The annihilation of typical individual defects in hexagonal cylinder-forming block copolymers is investigated using the self-consistent field theory (SCFT) in conjunction with the string method. Usually, defect removal in two-dimensional hexagonal patterns involves reorganizing the cylindrical domains. Unlike atoms in solid crystals, the self-assembled cylindrical domains of block copolymers are "soft". Thus, the kinetic motions of the cylindrical domains resemble liquid droplets. Dislocations in hexagonal patterns are eliminated via creating and removing cylindrical domains. Our results show that new cylindrical domains are created via either a nucleation-like process or a fission-like process, whereas excessive domains are eliminated via a fusion-like or evaporation-like process. For weakly segregated block copolymers, the nucleation-like and evaporation-like processes are preferred.
Collapse
Affiliation(s)
- Yongzhi Ren
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin 150001, China
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Schneider L, de Pablo JJ. Combining Particle-Based Simulations and Machine Learning to Understand Defect Kinetics in Thin Films of Symmetric Diblock Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ludwig Schneider
- Pritzker School of Molecular Engineering, University of Chicago, 5640 Ellis Avenue, 60637 Chicago, Illinois, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, 5640 Ellis Avenue, 60637 Chicago, Illinois, United States
| |
Collapse
|
5
|
Hu T, Ren Y, Li W. Impact of Molecular Asymmetry of Block Copolymers on the Stability of Defects in Aligned Lamellae. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianyi Hu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yongzhi Ren
- Key Lab of In-fiber Integrated Optics, Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Hu T, Ren Y, Zhang L, Li W. Impact of Architecture of Symmetric Block Copolymers on the Stability of a Dislocation Defect. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tianyi Hu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yongzhi Ren
- Key Lab of In-fiber Integrated Optics, Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Schneider L, Lichtenberg G, Vega D, Müller M. Symmetric Diblock Copolymers in Cylindrical Confinement: A Way to Chiral Morphologies? ACS APPLIED MATERIALS & INTERFACES 2020; 12:50077-50095. [PMID: 33079515 DOI: 10.1021/acsami.0c16987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the confinement-induced formation and stability of helix morphologies in lamella-forming AB diblock copolymers via large-scale, particle-based, single-chain-in-mean-field simulations. Such helix structures are rarely observed in bulk or thin films. Structure formation is induced by quenching incompatibility, χN, from a disordered morphology. If the surfaces of the cylindrical confinement do not prefer one component over the other, we observe that stacked lamellae, with their normals along the cylinder axis, are the preferred morphology. Kinetically, this morphology initially forms close to the cylinder surface, whereas the spontaneous, spinodal microphase separation in the cylinder's interior gives rise to a microemulsion-like morphology, riddled with defects and no directional order. Subsequently, the ordered morphology on the cylinder surface progresses inward, pervading the entire volume. In case that the cylindrical pore is only partially filled, the additional confinement along the cylinder axis generally gives rise to incommensurability between the equilibrium spacing of stacked lamellae and the cylinder height. To accommodate this mismatch, the lamella normals will tilt away from the cylinder axis and generate helices of lamellae on the surface of the cylinder. Again, this order progresses from the cylinder surface inward, generating a chiral morphology. Because the spacing between the internal AB interfaces decreases upon approaching the helix center, the concomitant stress results in a decrease in the number of lamellae and the formation of unique dislocation defects. This type of chiral defect morphology is reproducibly formed by the kinetics of structure formation in partly filled cylindrical pores with nonpreferential surfaces and may find applications in photonic applications.
Collapse
Affiliation(s)
- Ludwig Schneider
- Institute for Theoretical Physics, Georg-August University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Georg Lichtenberg
- Institute for Theoretical Physics, Georg-August University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Daniel Vega
- Instituto de Fı́sica del Sur (IFISUR), Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Universidad Nacional de Sur, 8000 Bahı́a Blanca, Argentina
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Ren Y, Müller M. Impact of Molecular Architecture on Defect Removal in Lamella-Forming Triblock Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongzhi Ren
- Key Lab of In-Fiber Integrated Optics, Ministry of Education, 150001 Harbin, China
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Marcus Müller
- Institut für Theoretische Physik, Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Müller M. Process-directed self-assembly of copolymers: Results of and challenges for simulation studies. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101198] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Doise J, Koh JH, Kim JY, Zhu Q, Kinoshita N, Suh HS, Delgadillo PR, Vandenberghe G, Willson CG, Ellison CJ. Strategies for Increasing the Rate of Defect Annihilation in the Directed Self-Assembly of High-χ Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48419-48427. [PMID: 31752485 DOI: 10.1021/acsami.9b17858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Directed self-assembly (DSA) of high-χ block copolymer thin films is a promising approach for nanofabrication of features with length scale below 10 nm. Recent work has highlighted that kinetics are of crucial importance in determining whether a block copolymer film can self-assemble into a defect-free ordered state. In this work, different strategies for improving the rate of defect annihilation in the DSA of a silicon-containing, high-χ block copolymer film were explored. Chemo-epitaxial DSA of poly(4-methoxystyrene-block-4-trimethylsilylstyrene) with 5× density multiplication was implemented on 300 mm wafers by using production level nanofabrication tools, and the influence of different processes and material parameters on dislocation defect density was studied. It was observed that only at sufficiently low χN can the block copolymer assemble into well-aligned patterns within a practical time frame. In addition, there is a clear correlation between the rate of the lamellar grain coarsening in unguided self-assembly and the rate of dislocation annihilation in DSA. For a fixed chemical pattern, the density of kinetically trapped dislocation defects can be predicted by measuring the correlation length of the unguided self-assembly under the same process conditions. This learning enables more efficient screening of block copolymers and annealing conditions by rapid analysis of block copolymer films that were allowed to self-assemble into unguided (commonly termed fingerprint) patterns.
Collapse
Affiliation(s)
- Jan Doise
- imec , Kapeldreef 75 , 3001 Heverlee , Belgium
| | - Jai Hyun Koh
- McKetta Department of Chemical Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Ji Yeon Kim
- McKetta Department of Chemical Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Qingjun Zhu
- McKetta Department of Chemical Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Natsuko Kinoshita
- McKetta Department of Chemical Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
- JSR Fine Electronic Materials Research Laboratories , Yokkaichi , Mie 510-8552 , Japan
| | | | | | | | - C Grant Willson
- McKetta Department of Chemical Engineering , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
11
|
Xu X, Man X, Doi M, Ou-Yang ZC, Andelman D. Defect Removal by Solvent Vapor Annealing in Thin Films of Lamellar Diblock Copolymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xinpeng Xu
- Physics Program, Guangdong Technion − Israel Institute of Technology, Shantou, Guangdong 515063, China
- Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Xingkun Man
- Center of Soft Matter Physics and Its Applications and School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
| | - Masao Doi
- Center of Soft Matter Physics and Its Applications and School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
| | - Zhong-can Ou-Yang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - David Andelman
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| |
Collapse
|
12
|
Zhang L, Peng Y, Zhang L, Lei X, Yao W, Wang N. Temperature and initial composition dependence of pattern formation and dynamic behavior in phase separation under deep-quenched conditions. RSC Adv 2019; 9:10670-10678. [PMID: 35515277 PMCID: PMC9062494 DOI: 10.1039/c9ra01118h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/23/2019] [Indexed: 01/05/2023] Open
Abstract
Phase separation of SCN-H2O ([CH2CN]2-H2O) transparent solutions is simulated in two dimensions and the effects of quenching temperature and initial composition on the pattern formation and dynamic behavior of the second phase are examined via Minkowski functionals. The simulation is based on model H where the molar free energy of the SCN-H2O solution is obtained by the CALPHAD approach. We find that the composition and temperature do not affect the exponent in the domain growth law, where the average domain size with time yields R(t)-t n . However, they influence the pattern formation and dynamic behavior of the second phase in phase separation. Lower temperature leads to a finer bicontinuous structure in spinodal decomposition and promotes the nucleation rate, which accelerates the phase separation and results in more liquid droplets with smaller size. As the initial composition diverges from the critical value, the spatial patterns change gradually from bicontinuous into a droplet-like structure. When the initial composition is closer to the critical value, for spinodal decomposition, the diffusion-driven growth lasts for a longer time and the average domain size of liquid droplets is larger. For nucleation-driven growth, in contrast, the single phase separates more quickly and the average size of liquid droplets is smaller.
Collapse
Affiliation(s)
- Liang Zhang
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Natural and Applied Sciences, Northwestern Polytechnical University Xi'an 710072 China
| | - Yinli Peng
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Natural and Applied Sciences, Northwestern Polytechnical University Xi'an 710072 China
| | - Li Zhang
- School of Materials Science and Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Xiaowei Lei
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Natural and Applied Sciences, Northwestern Polytechnical University Xi'an 710072 China
| | - Wenjing Yao
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Natural and Applied Sciences, Northwestern Polytechnical University Xi'an 710072 China
| | - Nan Wang
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, School of Natural and Applied Sciences, Northwestern Polytechnical University Xi'an 710072 China
| |
Collapse
|
13
|
Schneider LY, Müller M. Engineering Scale Simulation of Nonequilibrium Network Phases for Battery Electrolytes. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ludwig Y. Schneider
- Institute for Theoretical Physics, Georg-August-Universität, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August-Universität, Göttingen, Germany
| |
Collapse
|
14
|
Sun DW, Müller M. Numerical algorithms for solving self-consistent field theory reversely for block copolymer systems. J Chem Phys 2018; 149:214104. [PMID: 30525732 DOI: 10.1063/1.5063302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Besides dictating the equilibrium phase diagram, the rugged free-energy landscape of AB block copolymers gives rise to a multitude of non-equilibrium phenomena. Self-consistent field theory (SCFT) can be employed to calculate the mean-field free energy, F [ ϕ A t a r g e t ] , of a non-equilibrium unstable state that is characterized by a given spatial density distribution, ϕ A t a r g e t , in the incompressible system. Such a free-energy functional is the basis of describing the structure formation by dynamic SCFT techniques or the identification of minimum free-energy paths via the string method. The crucial step consists in computing the external potential fields that generate the given density distribution in the corresponding system of non-interacting copolymers, i.e., the potential-to-density relation employed in equilibrium SCFT calculations has to be inverted (reverse SCFT calculation). We describe, generalize, and evaluate the computational efficiency of two different numerical algorithms for this reverse SCFT calculation-the Debye-function algorithm based on the structure factor and the field-theoretic umbrella-potential (FUP) algorithm. In contrast to the Debye-function algorithm, the FUP algorithm only yields the exact mean-field values of the given target densities in the limit of a strong umbrella potential, and we devise a two-step variant of the FUP algorithm that significantly mitigates this issue. For Gaussian copolymers, the Debye-function algorithm is more efficient for highly unstable states that are far away from the equilibrium, whereas the improved FUP algorithm outperforms the Debye-function algorithm closer to metastable states and is easily transferred to more complex molecular architectures.
Collapse
Affiliation(s)
- De-Wen Sun
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Marcus Müller
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
15
|
Affiliation(s)
- De-Wen Sun
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Marcus Müller
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| |
Collapse
|