1
|
Palos E, Bull-Vulpe EF, Zhu X, Agnew H, Gupta S, Saha S, Paesani F. Current Status of the MB-pol Data-Driven Many-Body Potential for Predictive Simulations of Water Across Different Phases. J Chem Theory Comput 2024; 20:9269-9289. [PMID: 39401055 DOI: 10.1021/acs.jctc.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Developing a molecular-level understanding of the properties of water is central to numerous scientific and technological applications. However, accurately modeling water through computer simulations has been a significant challenge due to the complex nature of the hydrogen-bonding network that water molecules form under different thermodynamic conditions. This complexity has led to over five decades of research and many modeling attempts. The introduction of the MB-pol data-driven many-body potential energy function marked a significant advancement toward a universal molecular model capable of predicting the structural, thermodynamic, dynamical, and spectroscopic properties of water across all phases. By integrating physics-based and data-driven (i.e., machine-learned) components, which correctly capture the delicate balance among different many-body interactions, MB-pol achieves chemical and spectroscopic accuracy, enabling realistic molecular simulations of water, from gas-phase clusters to liquid water and ice. In this review, we present a comprehensive overview of the data-driven many-body formalism adopted by MB-pol, highlight the main results and predictions made from computer simulations with MB-pol to date, and discuss the prospects for future extensions to data-driven many-body potentials of generic and reactive molecular systems.
Collapse
Affiliation(s)
- Etienne Palos
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Ethan F Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Xuanyu Zhu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Henry Agnew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Shreya Gupta
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Suman Saha
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- Halicioǧlu Data Science Institute, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Eraković M, Cvitaš MT. Tunneling splittings using modified WKB method in Cartesian coordinates: The test case of vinyl radical. J Chem Phys 2024; 160:154112. [PMID: 38639313 DOI: 10.1063/5.0204986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024] Open
Abstract
Modified WKB theory for calculating tunneling splittings in symmetric multi-well systems in full dimensionality is re-derived using Cartesian coordinates. It is explicitly shown that the theory rests on the wavefunction that is exact for harmonic potentials. The theory was applied to calculate tunneling splittings in vinyl radical and some of its deuterated isotopologues in their vibrational ground states and the low-lying vibrationally excited states and compared to exact variational results. The exact results are reproduced within a factor of 2 in most states. Remarkably, all large enhancements of tunneling splittings relative to the ground state, up to three orders in magnitude in some excited mode combinations, are well reproduced. It is also shown that in the asymmetrically deuterated vinyl radical, the theory correctly predicts the states that are localized in a single well and the delocalized tunneling states. Modified WKB theory on the minimum action path is computationally inexpensive and can also be applied without modification to much larger systems in full dimensionality; the results of this test case serve to give insight into the expected accuracy of the method.
Collapse
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Marko T Cvitaš
- Department of Physics, University of Zagreb Faculty of Science, Bijenička Cesta 32, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Mendonça BHS, de Moraes EE, Kirch A, Batista RJC, de Oliveira AB, Barbosa MC, Chacham H. Flow through Deformed Carbon Nanotubes Predicted by Rigid and Flexible Water Models. J Phys Chem B 2023; 127:8634-8643. [PMID: 37754781 DOI: 10.1021/acs.jpcb.3c02889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In this study, using nonequilibrium molecular dynamics simulation, the flow of water in deformed carbon nanotubes is studied for two water models TIP4P/2005 and simple point charge/FH (SPC/FH). The results demonstrated a nonuniform dependence of the flow on the tube deformation and the flexibility imposed on the water molecules, leading to an unexpected increase in the flow in some cases. The effects of the tube diameter and pressure gradient are investigated to explain the abnormal flow behavior with different degrees of structural deformation.
Collapse
Affiliation(s)
- Bruno H S Mendonça
- Departamento de Física, ICEX, Universidade Federal de Minas Gerais, CP 702, Belo Horizonte 30123-970, MG, Brazil
| | - Elizane E de Moraes
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador 40210-340, BA, Brazil
| | - Alexsandro Kirch
- Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo 05315-970, SP, Brazil
| | - Ronaldo J C Batista
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Alan B de Oliveira
- Departamento de Física, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Marcia C Barbosa
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Hélio Chacham
- Departamento de Física, ICEX, Universidade Federal de Minas Gerais, CP 702, Belo Horizonte 30123-970, MG, Brazil
| |
Collapse
|
4
|
Riera M, Knight C, Bull-Vulpe EF, Zhu X, Agnew H, Smith DGA, Simmonett AC, Paesani F. MBX: A many-body energy and force calculator for data-driven many-body simulations. J Chem Phys 2023; 159:054802. [PMID: 37526156 PMCID: PMC10550339 DOI: 10.1063/5.0156036] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Many-Body eXpansion (MBX) is a C++ library that implements many-body potential energy functions (PEFs) within the "many-body energy" (MB-nrg) formalism. MB-nrg PEFs integrate an underlying polarizable model with explicit machine-learned representations of many-body interactions to achieve chemical accuracy from the gas to the condensed phases. MBX can be employed either as a stand-alone package or as an energy/force engine that can be integrated with generic software for molecular dynamics and Monte Carlo simulations. MBX is parallelized internally using Open Multi-Processing and can utilize Message Passing Interface when available in interfaced molecular simulation software. MBX enables classical and quantum molecular simulations with MB-nrg PEFs, as well as hybrid simulations that combine conventional force fields and MB-nrg PEFs, for diverse systems ranging from small gas-phase clusters to aqueous solutions and molecular fluids to biomolecular systems and metal-organic frameworks.
Collapse
Affiliation(s)
- Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Christopher Knight
- Argonne National Laboratory, Computational Science Division, Lemont, Illinois 60439, USA
| | - Ethan F. Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Xuanyu Zhu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Henry Agnew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | - Andrew C. Simmonett
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
5
|
Trenins G, Meuser L, Bertschi H, Vavourakis O, Flütsch R, Richardson JO. Exact tunneling splittings from symmetrized path integrals. J Chem Phys 2023; 159:034108. [PMID: 37466233 DOI: 10.1063/5.0158879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
We develop a new simulation technique based on path-integral molecular dynamics for calculating ground-state tunneling splitting patterns from ratios of symmetrized partition functions. In particular, molecular systems are rigorously projected onto their J = 0 rotational state by an "Eckart spring" that connects two adjacent beads in a ring polymer. Using this procedure, the tunneling splitting can be obtained from thermodynamic integration at just one (sufficiently low) temperature. Converged results are formally identical to the values that would have been obtained by solving the full rovibrational Schrödinger equation on a given Born-Oppenheimer potential energy surface. The new approach is showcased with simulations of hydronium and methanol, which are in good agreement with wavefunction-based calculations and experimental measurements. The method will be of particular use for the study of low-barrier methyl rotations and other floppy modes, where instanton theory is not valid.
Collapse
Affiliation(s)
- George Trenins
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Lars Meuser
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Hannah Bertschi
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Odysseas Vavourakis
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Reto Flütsch
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Videla PE, Foguel L, Vaccaro PH, Batista VS. Proton-Tunneling Dynamics along Low-Barrier Hydrogen Bonds: A Full-Dimensional Instanton Study of 6-Hydroxy-2-formylfulvene. J Phys Chem Lett 2023:6368-6375. [PMID: 37418693 DOI: 10.1021/acs.jpclett.3c01337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Understanding the dynamics of proton transfer along low-barrier hydrogen bonds remains an outstanding challenge of great fundamental and practical interest, reflecting the central role of quantum effects in reactions of chemical and biological importance. Here, we combine ab initio calculations with the semiclassical ring-polymer instanton method to investigate tunneling processes on the ground electronic state of 6-hydroxy-2-formylfulvene (HFF), a prototypical neutral molecule supporting low-barrier hydrogen-bonding. The results emerging from a full-dimensional ab initio instanton analysis reveal that the tunneling path does not pass through the instantaneous transition-state geometry. Instead, the tunneling process involves a multidimensional reaction coordinate with concerted reorganization of the heavy-atom skeletal framework to substantially reduce the donor-acceptor distance and drive the ensuing intramolecular proton-transfer event. The predicted tunneling-induced splittings for HFF isotopologues are in good agreement with experimental findings, leading to percentage deviations of only 20-40%. Our full-dimensional results allow us to characterize vibrational contributions along the tunneling path, highlighting the intrinsically multidimensional nature of the attendant hydron-migration dynamics.
Collapse
Affiliation(s)
- Pablo E Videla
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Lidor Foguel
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Patrick H Vaccaro
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
7
|
Zhu YC, Yang S, Zeng JX, Fang W, Jiang L, Zhang DH, Li XZ. Accurate calculation of tunneling splittings in water clusters using path-integral based methods. J Chem Phys 2023; 158:2895223. [PMID: 37290067 DOI: 10.1063/5.0146562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 06/10/2023] Open
Abstract
Tunneling splittings observed in molecular rovibrational spectra are significant evidence for tunneling motion of hydrogen nuclei in water clusters. Accurate calculations of the splitting sizes from first principles require a combination of high-quality inter-atomic interactions and rigorous methods to treat the nuclei with quantum mechanics. Many theoretical efforts have been made in recent decades. This Perspective focuses on two path-integral based tunneling splitting methods whose computational cost scales well with the system size, namely, the ring-polymer instanton method and the path-integral molecular dynamics (PIMD) method. From a simple derivation, we show that the former is a semiclassical approximation to the latter, despite that the two methods are derived very differently. Currently, the PIMD method is considered to be an ideal route to rigorously compute the ground-state tunneling splitting, while the instanton method sacrifices some accuracy for a significantly smaller computational cost. An application scenario of such a quantitatively rigorous calculation is to test and calibrate the potential energy surfaces of molecular systems by spectroscopic accuracy. Recent progress in water clusters is reviewed, and the current challenges are discussed.
Collapse
Affiliation(s)
- Yu-Cheng Zhu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Materials, Peking University, Beijing 100871, People's Republic of China
| | - Shuo Yang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jia-Xi Zeng
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Materials, Peking University, Beijing 100871, People's Republic of China
| | - Wei Fang
- Department of Chemistry, Fudan University, Shanghai 200438, People's Republic of China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Xin-Zheng Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Materials, Peking University, Beijing 100871, People's Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, People's Republic of China
| |
Collapse
|
8
|
Mocanu FC, Berthier L, Ciarella S, Khomenko D, Reichman DR, Scalliet C, Zamponi F. Microscopic observation of two-level systems in a metallic glass model. J Chem Phys 2023; 158:014501. [PMID: 36610958 DOI: 10.1063/5.0128820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The low-temperature quasi-universal behavior of amorphous solids has been attributed to the existence of spatially localized tunneling defects found in the low-energy regions of the potential energy landscape. Computational models of glasses can be studied to elucidate the microscopic nature of these defects. Recent simulation work has demonstrated the means of generating stable glassy configurations for models that mimic metallic glasses using the swap Monte Carlo algorithm. Building on these studies, we present an extensive exploration of the glassy metabasins of the potential energy landscape of a variant of the most widely used model of metallic glasses. We carefully identify tunneling defects and reveal their depletion with increased glass stability. The density of tunneling defects near the experimental glass transition temperature appears to be in good agreement with experimental measurements.
Collapse
Affiliation(s)
- Felix C Mocanu
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Ludovic Berthier
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Simone Ciarella
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Dmytro Khomenko
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Camille Scalliet
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Francesco Zamponi
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| |
Collapse
|
9
|
Zhuang D, Riera M, Zhou R, Deary A, Paesani F. Hydration Structure of Na + and K + Ions in Solution Predicted by Data-Driven Many-Body Potentials. J Phys Chem B 2022; 126:9349-9360. [PMID: 36326071 DOI: 10.1021/acs.jpcb.2c05674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The hydration structure of Na+ and K+ ions in solution is systematically investigated using a hierarchy of molecular models that progressively include more accurate representations of many-body interactions. We found that a conventional empirical pairwise additive force field that is commonly used in biomolecular simulations is unable to reproduce the extended X-ray absorption fine structure (EXAFS) spectra for both ions. In contrast, progressive inclusion of many-body effects rigorously derived from the many-body expansion of the energy allows the MB-nrg potential energy functions (PEFs) to achieve nearly quantitative agreement with the experimental EXAFS spectra, thus enabling the development of a molecular-level picture of the hydration structure of both Na+ and K+ in solution. Since the MB-nrg PEFs have already been shown to accurately describe isomeric equilibria and vibrational spectra of small ion-water clusters in the gas phase, the present study demonstrates that the MB-nrg PEFs effectively represent the long-sought-after models able to correctly predict the properties of ionic aqueous systems from the gas to the liquid phase, which has so far remained elusive.
Collapse
Affiliation(s)
- Debbie Zhuang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Ruihan Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Alexander Deary
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California92093, United States.,Materials Science and Engineering, University of California San Diego, La Jolla, California92093, United States.,San Diego Supercomputer Center, University of California San Diego, La Jolla, California92093, United States
| |
Collapse
|
10
|
Zhu YC, Yang S, Zeng JX, Fang W, Jiang L, Zhang DH, Li XZ. Torsional Tunneling Splitting in a Water Trimer. J Am Chem Soc 2022; 144:21356-21362. [DOI: 10.1021/jacs.2c09909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu-Cheng Zhu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing100871, People’s Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Materials, Peking University, Beijing100871, People’s Republic of China
| | - Shuo Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100871, People’s Republic of China
| | - Jia-Xi Zeng
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing100871, People’s Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Materials, Peking University, Beijing100871, People’s Republic of China
| | - Wei Fang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People’s Republic of China
- Department of Chemistry, Fudan University, Shanghai200438, People’s Republic of China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People’s Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People’s Republic of China
| | - Xin-Zheng Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing100871, People’s Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Materials, Peking University, Beijing100871, People’s Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, People’s Republic of China
| |
Collapse
|
11
|
Käser S, Richardson JO, Meuwly M. Transfer Learning for Affordable and High-Quality Tunneling Splittings from Instanton Calculations. J Chem Theory Comput 2022; 18:6840-6850. [DOI: 10.1021/acs.jctc.2c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
12
|
Bull-Vulpe EF, Riera M, Bore SL, Paesani F. Data-Driven Many-Body Potential Energy Functions for Generic Molecules: Linear Alkanes as a Proof-of-Concept Application. J Chem Theory Comput 2022. [PMID: 36113028 DOI: 10.1021/acs.jctc.2c00645] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a generalization of the many-body energy (MB-nrg) theoretical/computational framework that enables the development of data-driven potential energy functions (PEFs) for generic covalently bonded molecules, with arbitrary quantum mechanical accuracy. The "nearsightedness of electronic matter" is exploited to define monomers as "natural building blocks" on the basis of their distinct chemical identity. The energy of generic molecules is then expressed as a sum of individual many-body energies of incrementally larger subsystems. The MB-nrg PEFs represent the low-order n-body energies, with n = 1-4, using permutationally invariant polynomials derived from electronic structure data carried out at an arbitrary quantum mechanical level of theory, while all higher-order n-body terms (n > 4) are represented by a classical many-body polarization term. As a proof-of-concept application of the general MB-nrg framework, we present MB-nrg PEFs for linear alkanes. The MB-nrg PEFs are shown to accurately reproduce reference energies, harmonic frequencies, and potential energy scans of alkanes, independently of their length. Since, by construction, the MB-nrg framework introduced here can be applied to generic covalently bonded molecules, we envision future computer simulations of complex molecular systems using data-driven MB-nrg PEFs, with arbitrary quantum mechanical accuracy.
Collapse
Affiliation(s)
- Ethan F. Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Sigbjørn L. Bore
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Cang S, Shan Y, Wang Z. Conservative dynamics in a novel class of 3D generalized thermostatted systems. CHAOS (WOODBURY, N.Y.) 2022; 32:083143. [PMID: 36049954 DOI: 10.1063/5.0101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
This paper reports a method to derive a novel class of 3D generalized thermostatted oscillators from a simple damped harmonic oscillator. Its detailed procedure is obtained through a mathematical derivation. Then, we propose an example system to show the effectiveness of the method. Furthermore, the numerical analysis is performed to investigate its rich conservative dynamics, including chaotic sea, hierarchical invariant tori, and the coexistence of chaotic seas and invariant tori with islands-around-islands hierarchy, even if there are three dissipative terms in the example system. To verify the existence of conservative chaos at the physical level, an analog circuit is presented to observe the existing conservative chaotic flows in National Instruments multisim. We finally provide two systems, which can produce conservative chaotic flows with more complicated topologies, and draw our conclusions.
Collapse
Affiliation(s)
- Shijian Cang
- Department of Industry Design, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Yueyue Shan
- Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry and Food Machinery and Equipment, College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Zenghui Wang
- Department of Electrical Engineering, University of South Africa, Florida 1710, South Africa
| |
Collapse
|
14
|
Méndez E, Videla PE, Laria D. Equilibrium and Dynamical Characteristics of Hydrogen Bond Bifurcations in Water-Water and Water-Ammonia Dimers: A Path Integral Molecular Dynamics Study. J Phys Chem A 2022; 126:4721-4733. [PMID: 35834556 DOI: 10.1021/acs.jpca.2c02525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present path integral molecular dynamics results that describe the effects of nuclear quantum fluctuations on equilibrium and dynamical characteristics pertaining to bifurcation pathways in hydrogen bonded dimers combining water and ammonia, at cryogenic temperatures of the order of 20 K. Along these isomerizations, the hydrogen atoms in the molecules acting as hydrogen-bond donors interchange their original dangling/connective characters. Our results reveal that the resulting quantum transition paths comprise three stages: the initial and final ones involve overall rotations during which the two protons retain their classical-like characteristics. Effects from quantum fluctuation are clearly manifested in the changes operated at the intermediate passages over transition states, as the spatial extents of the protons stretch over typical lengths comparable to the distances between connective and dangling basins of attractions. Consequently, the classical over-the-hill path is replaced by a tunneling controlled mechanism which, within the path integral perspective, can be cast in terms of concerted inter-basin migrations of polymer beads from dangling-to-connective and from connective-to-dangling, at practically no energy costs. We also estimated the characteristic timescales describing such interconversions within the approximate ring polymer rate theory. Effects derived from full and partial deuteration are also discussed.
Collapse
Affiliation(s)
- Emilio Méndez
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
| | - Pablo E Videla
- Department of Chemistry and Energy Sciences Institute, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Daniel Laria
- Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429 Buenos Aires, Argentina
| |
Collapse
|
15
|
Eraković M, Cvitaš MT. Vibrational Tunneling Spectra of Molecules with Asymmetric Wells: A Combined Vibrational Configuration Interaction and Instanton Approach. J Chem Theory Comput 2022; 18:2785-2802. [PMID: 35439012 PMCID: PMC9097297 DOI: 10.1021/acs.jctc.2c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A combined approach
that uses the vibrational configuration interaction
(VCI) and semiclassical instanton theory was developed to study vibrational
tunneling spectra of molecules with multiple wells in full dimensionality.
The method can be applied to calculate low-lying vibrational states in the systems with an
arbitrary number of minima, which are not necessarily equal in energy
or shape. It was tested on a two-dimensional double-well model system
and on malonaldehyde, and the calculations reproduced the exact quantum
mechanical (QM) results with high accuracy. The method was subsequently
applied to calculate the vibrational spectrum of the asymmetrically
deuterated malonaldehyde with nondegenerate vibrational frequencies
in the two wells. The spectrum is obtained at a cost of single-well
VCI calculations used to calculate the local energies. The interactions
between states of different wells are computed semiclassically using
the instanton theory at a comparatively negligible computational cost.
The method is particularly suited to systems in which the wells are
separated by large potential barriers and tunneling splittings are
small, for example, in some water clusters, when the exact QM methods
come at a prohibitive computational cost.
Collapse
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry, Rud̵er Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Marko T Cvitaš
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička Cesta 32, 10000 Zagreb, Croatia
| |
Collapse
|
16
|
Vogt E, Simkó I, Császár AG, Kjaergaard HG. Reduced-dimensional vibrational models of the water dimer. J Chem Phys 2022; 156:164304. [PMID: 35490001 DOI: 10.1063/5.0090013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A model based on the finite-basis representation of a vibrational Hamiltonian expressed in internal coordinates is developed. The model relies on a many-mode, low-order expansion of both the kinetic energy operator and the potential energy surface (PES). Polyad truncations and energy ceilings are used to control the size of the vibrational basis to facilitate accurate computations of the OH stretch and HOH bend intramolecular transitions of the water dimer (H2 16O)2. Advantages and potential pitfalls of the applied approximations are highlighted. The importance of choices related to the treatment of the kinetic energy operator in reduced-dimensional calculations and the accuracy of different water dimer PESs are discussed. A range of different reduced-dimensional computations are performed to investigate the wavenumber shifts in the intramolecular transitions caused by the coupling between the intra- and intermolecular modes. With the use of symmetry, full 12-dimensional vibrational energy levels of the water dimer are calculated, predicting accurately the experimentally observed intramolecular fundamentals. It is found that one can also predict accurate intramolecular transition wavenumbers for the water dimer by combining a set of computationally inexpensive reduced-dimensional calculations, thereby guiding future effective-Hamiltonian treatments.
Collapse
Affiliation(s)
- Emil Vogt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Irén Simkó
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Attila G Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
17
|
Bull-Vulpe EF, Riera M, Götz AW, Paesani F. MB-Fit: Software infrastructure for data-driven many-body potential energy functions. J Chem Phys 2021; 155:124801. [PMID: 34598567 DOI: 10.1063/5.0063198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many-body potential energy functions (MB-PEFs), which integrate data-driven representations of many-body short-range quantum mechanical interactions with physics-based representations of many-body polarization and long-range interactions, have recently been shown to provide high accuracy in the description of molecular interactions from the gas to the condensed phase. Here, we present MB-Fit, a software infrastructure for the automated development of MB-PEFs for generic molecules within the TTM-nrg (Thole-type model energy) and MB-nrg (many-body energy) theoretical frameworks. Besides providing all the necessary computational tools for generating TTM-nrg and MB-nrg PEFs, MB-Fit provides a seamless interface with the MBX software, a many-body energy and force calculator for computer simulations. Given the demonstrated accuracy of the MB-PEFs, particularly within the MB-nrg framework, we believe that MB-Fit will enable routine predictive computer simulations of generic (small) molecules in the gas, liquid, and solid phases, including, but not limited to, the modeling of quantum isomeric equilibria in molecular clusters, solvation processes, molecular crystals, and phase diagrams.
Collapse
Affiliation(s)
- Ethan F Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
18
|
Caruso A, Paesani F. Data-driven many-body models enable a quantitative description of chloride hydration from clusters to bulk. J Chem Phys 2021; 155:064502. [PMID: 34391363 DOI: 10.1063/5.0059445] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We present a new data-driven potential energy function (PEF) describing chloride-water interactions, which is developed within the many-body-energy (MB-nrg) theoretical framework. Besides quantitatively reproducing low-order many-body energy contributions, the new MB-nrg PEF is able to correctly predict the interaction energies of small chloride-water clusters calculated at the coupled cluster level of theory. Importantly, classical and quantum molecular dynamics simulations of a single chloride ion in water demonstrate that the new MB-nrg PEF predicts x-ray spectra in close agreement with the experimental results. Comparisons with an popular empirical model and a polarizable PEF emphasize the importance of an accurate representation of short-range many-body effect while demonstrating that pairwise additive representations of chloride-water and water-water interactions are inadequate for correctly representing the hydration structure of chloride in both gas-phase clusters and solution. We believe that the analyses presented in this study provide additional evidence for the accuracy and predictive ability of the MB-nrg PEFs, which can then enable more realistic simulations of ionic aqueous systems in different environments.
Collapse
Affiliation(s)
- Alessandro Caruso
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
19
|
Ye X, Zhou Z. Efficient sampling of thermal averages of interacting quantum particle systems with random batches. J Chem Phys 2021; 154:204106. [PMID: 34241161 DOI: 10.1063/5.0047437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An efficient sampling method, the pmmLang + RBM, is proposed to compute the quantum thermal average in the interacting quantum particle system. Benefiting from the random batch method (RBM), the pmmLang + RBM has the potential to reduce the complexity due to interaction forces per time step from O(NP2) to O(NP), where N is the number of beads and P is the number of particles. Although the RBM introduces a random perturbation of the interaction forces at each time step, the long time effects of the random perturbations along the sampling process only result in a small bias in the empirical measure of the pmmLang + RBM from the target distribution, which also implies a small error in the thermal average calculation. We numerically study the convergence of the pmmLang + RBM and quantitatively investigate the dependence of the error in computing the thermal average on the parameters such as batch size, time step, and so on. We also propose an extension of the pmmLang + RBM, which is based on the splitting Monte Carlo method and is applicable when the interacting potential contains a singular part.
Collapse
Affiliation(s)
- Xuda Ye
- School of Mathematical Sciences, Peking University, Beijing, China
| | - Zhennan Zhou
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
| |
Collapse
|
20
|
Sahu N, Richardson JO, Berger R. Instanton calculations of tunneling splittings in chiral molecules. J Comput Chem 2021; 42:210-221. [PMID: 33259074 DOI: 10.1002/jcc.26447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 11/11/2022]
Abstract
We report the ground state tunneling splittings (ΔE± ) of a number of axially chiral molecules using the ring-polymer instanton (RPI) method (J. Chem. Phys., 2011, 134, 054109). The list includes isotopomers of hydrogen dichalcogenides H2 X2 (X = O, S, Se, Te, and Po), hydrogen thioperoxide HSOH and dichlorodisulfane S2 Cl2 . Ab initio electronic-structure calculations have been performed on the level of second-order Møller-Plesset perturbation (MP2) theory either with split-valance basis sets or augmented correlation-consistent basis sets on H, O, S, and Cl atoms. Energy-consistent pseudopotential and corresponding triple zeta basis sets of the Stuttgart group are used on Se, Te, and Po atoms. The results are further improved using single point calculations performed at the coupled cluster level with iterative singles and doubles and perturbative triples amplitudes. When available for comparison, our computed values of ΔE± are found to lie within the same order of magnitude as values reported in the literature, although RPI also provides predictions for H2 Po2 and S2 Cl2 , which have not previously been directly calculated. Since RPI is a single-shot method which does not require detailed prior knowledge of the optimal tunneling path, it offers an effective way for estimating the tunneling dynamics of more complex chiral molecules, and especially those with small tunneling splittings.
Collapse
Affiliation(s)
- Nityananda Sahu
- Fachbereich Chemie, Theoretische Chemie, Philipps Universität Marburg, Marburg, Germany
| | | | - Robert Berger
- Fachbereich Chemie, Theoretische Chemie, Philipps Universität Marburg, Marburg, Germany
| |
Collapse
|
21
|
Lambros E, Paesani F. How good are polarizable and flexible models for water: Insights from a many-body perspective. J Chem Phys 2020; 153:060901. [DOI: 10.1063/5.0017590] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Eleftherios Lambros
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
22
|
Méndez E, Laria D. Nuclear quantum effects on the hydrogen bond donor-acceptor exchange in water-water and water-methanol dimers. J Chem Phys 2020; 153:054302. [PMID: 32770908 DOI: 10.1063/5.0016122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present results from path integral molecular dynamics simulations that describe effects from the explicit incorporation of nuclear quantum fluctuations on the topology of the free energy associated with the geared exchange of hydrogen bonds in the water-water dimer. Compared to the classical treatment, our results reveal important reductions in the free energy barriers and changes at a qualitative level in the overall profile. Most notable are those manifested by a plateau behavior, ascribed to nuclear tunneling, which bridges reactant and product states, contrasting with the usual symmetric double-well profile. The characteristics of the proton localizations along the pathway are examined. An imaginary time analysis of the rotational degrees of freedom of the partners in the dimer at the vicinities of transition states shows a clear "anticorrelation" between intermolecular interactions coupling beads localized in connective and dangling basins of attractions. As such, the transfer is operated by gradual concerted inter-basin migrations in opposite directions, at practically no energy costs. Modifications operated by partial deuteration and by the asymmetries in the hydrogen bonding characteristics prevailing in water-methanol heterodimers are also examined.
Collapse
Affiliation(s)
- Emilio Méndez
- Departamento de Química Inorgánica Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
| | - Daniel Laria
- Departamento de Química Inorgánica Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
| |
Collapse
|
23
|
Zhai Y, Caruso A, Gao S, Paesani F. Active learning of many-body configuration space: Application to the Cs+–water MB-nrg potential energy function as a case study. J Chem Phys 2020; 152:144103. [DOI: 10.1063/5.0002162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Yaoguang Zhai
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Alessandro Caruso
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Sicun Gao
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
24
|
Eraković M, Vaillant CL, Cvitaš MT. Instanton theory of ground-state tunneling splittings with general paths. J Chem Phys 2020; 152:084111. [PMID: 32113369 DOI: 10.1063/1.5145278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a multidimensional instanton theory for calculating ground-state tunneling splittings in Cartesian coordinates for general paths. It is an extension of the method by Mil'nikov and Nakamura [J. Chem. Phys. 115, 6881 (2001)] to include asymmetric paths that are necessary for calculating tunneling splitting patterns in multi-well systems, such as water clusters. The approach avoids multiple expensive matrix diagonalizations to converge the fluctuation prefactor in the ring-polymer instanton (RPI) method, and instead replaces them by an integration of a Riccati differential equation. When combined with the string method for locating instantons, we avoid the need to converge the calculation with respect to the imaginary time period of the semiclassical orbit, thereby reducing the number of convergence parameters of the optimized object to just one: the number of equally spaced system replicas used to represent the instanton path. The entirety of the numerical effort is thus concentrated in optimizing the shape of the path and evaluating hessians along the path, which is a dramatic improvement over RPI. In addition to the standard instanton approximations, we neglect the coupling of vibrational modes to external rotations. The method is tested on the model potential of malonaldehyde and on the water dimer and trimer, giving close agreement with RPI at a much-reduced cost.
Collapse
Affiliation(s)
- Mihael Eraković
- Department of Physical Chemistry, Rudđđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Christophe L Vaillant
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Marko T Cvitaš
- Department of Physical Chemistry, Rudđđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Cvitaš MT, Richardson JO. Quantum tunnelling pathways of the water pentamer. Phys Chem Chem Phys 2020; 22:1035-1044. [DOI: 10.1039/c9cp05561d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Five tunnelling rearrangement pathways in water pentamer are responsible for the ground-state tunnelling splitting pattern of 320 states.
Collapse
Affiliation(s)
- Marko T. Cvitaš
- Department of Physical Chemistry
- Ruđer Bošković Institute
- Croatia
| | | |
Collapse
|
26
|
Vaillant CL, Wales DJ, Althorpe SC. Tunneling Splittings in Water Clusters from Path Integral Molecular Dynamics. J Phys Chem Lett 2019; 10:7300-7304. [PMID: 31682130 DOI: 10.1021/acs.jpclett.9b02951] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present calculations of tunneling splittings in selected small water clusters, based on a recently developed path integral molecular dynamics (PIMD) method. The ground-rotational-state tunneling motions associated with the largest splittings in the water dimer, trimer, and hexamer are considered, and we show that the PIMD predictions are in very good agreement with benchmark quantum and experimental results. As the tunneling spectra are highly sensitive to both the details of the quantum dynamics and the potential energy surface, our calculations are a validation of the MB-Pol surface as well as the accuracy of PIMD. The favorable scaling of PIMD with system size paves the way for calculations of tunneling splittings in large, nonrigid molecular systems with motions that cannot be treated accurately by other methods, such as the semiclassical instanton.
Collapse
Affiliation(s)
- C L Vaillant
- Laboratory of Theoretical Physical Chemistry , Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - D J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - S C Althorpe
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
27
|
Vaillant CL, Althorpe SC, Wales DJ. Path Integral Energy Landscapes for Water Clusters. J Chem Theory Comput 2019; 15:33-42. [PMID: 30550261 DOI: 10.1021/acs.jctc.8b00675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The energy landscapes for a discretized path integral representation of the water dimer, trimer and pentamer are characterized in terms of the localized (classical) and delocalized minima and transition states. The transition states are finite-temperature approximations to the exact instanton path, and they are typically used to calculate the tunneling splittings or reaction rates. The features of the path integral landscape are explored, thus elucidating procedures that could usefully be automated when searching for instantons in larger systems. Our work not only clarifies the role of minima and transition states in path integral calculations but also enables us to analyze the quantum-to-classical transition.
Collapse
Affiliation(s)
- Christophe L Vaillant
- University Chemical Laboratories , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Stuart C Althorpe
- University Chemical Laboratories , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - David J Wales
- University Chemical Laboratories , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
28
|
Vaillant CL, Cvitaš MT. Rotation-tunneling spectrum of the water dimer from instanton theory. Phys Chem Chem Phys 2018; 20:26809-26813. [DOI: 10.1039/c8cp04991b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A linearly-scaling path-integral method is developed to calculate rotation-tunneling spectra, and is applied to the water dimer.
Collapse
Affiliation(s)
| | - Marko T. Cvitaš
- Department of Physical Chemistry, Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| |
Collapse
|