1
|
Ren M, Liu D, Qin F, Chen X, Ma W, Tian R, Weng T, Wang D, Astruc D, Liang L. Single-molecule resolution of macromolecules with nanopore devices. Adv Colloid Interface Sci 2025; 338:103417. [PMID: 39889505 DOI: 10.1016/j.cis.2025.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Nanopore-based electrical detection technology holds single-molecule resolution and combines the advantages of high sensitivity, high throughput, rapid analysis, and label-free detection. It is widely applied in the determination of organic and biological macromolecules, small molecules, and nanomaterials, as well as in nucleic acid and protein sequencing. There are a wide variety of organic polymers and biopolymers, and their chemical structures, and conformation in solution directly affect their ensemble properties. Currently, there is limited approach available for the analysis of single-molecule conformation and self-assembled topologies of polymers, dendrimers and biopolymers. Nanopore single-molecule platform offers unique advantages over other sensing technologies, particularly in molecular size differentiation of macromolecules and complex conformation analysis. In this review, the classification of nanopore devices, including solid-state nanopores (SSNs), biological nanopores, and hybrid nanopores is introduced. The recent developments and applications of nanopore devices are summarized, with a focus on the applications of nanopore platform in the resolution of the structures of synthetic polymer, including dendritic, star-shaped, block copolymers, as well as biopolymers, including polysaccharides, nucleic acids and proteins. The future prospects of nanopore sensing technique are ultimately discussed.
Collapse
Affiliation(s)
- Meili Ren
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China; Chongqing Jiaotong University, Chongqing 400014, PR China
| | - Daixin Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Fupeng Qin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Xun Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Wenhao Ma
- Chongqing University, Chongqing 400044, China
| | - Rong Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Ting Weng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Deqang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Didier Astruc
- University of Bordeaux, ISM UMR CNRS 5255, 33405 Talence Cedex, France.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China.
| |
Collapse
|
2
|
Wu F, Yang X, Wang C, Zhao B, Luo MB. Langevin Dynamics Study on the Driven Translocation of Polymer Chains with a Hairpin Structure. Molecules 2024; 29:4042. [PMID: 39274890 PMCID: PMC11397710 DOI: 10.3390/molecules29174042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/16/2024] Open
Abstract
The hairpin structure is a common and fundamental secondary structure in macromolecules. In this work, the process of the translocation of a model polymer chain with a hairpin structure is studied using Langevin dynamics simulations. The simulation results show that the dynamics of hairpin polymer translocation through a nanopore are influenced by the hairpin structure. Hairpin polymers can be classified into three categories, namely, linear-like, unsteady hairpin, and steady hairpin, according to the interaction with the stem structure. The translocation behavior of linear-like polymers is similar to that of a linear polymer chain. The time taken for the translocation of unsteady hairpin polymers is longer than that for a linear chain because it takes a long time to unfold the hairpin structure, and this time increases with stem interaction and decreases with the driving force. The translocation of steady hairpin polymers is distinct, especially under a weak driving force; the difficulty of unfolding the hairpin structure leads to a low translocation probability and a short translocation time. The translocation behavior of hairpin polymers can be explained by the theory of the free-energy landscape.
Collapse
Affiliation(s)
- Fan Wu
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Xiao Yang
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Chao Wang
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Bin Zhao
- Department of Physics, Taizhou University, Taizhou 318000, China
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Li C, Chen Q, Ding M. Escape dynamics of active ring polymers in a cylindrical nanochannel. SOFT MATTER 2024; 20:1719-1724. [PMID: 38284326 DOI: 10.1039/d3sm01524f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
We explore the escape dynamics of active ring polymers confined in a cylindrical nanochannel using Brownian dynamics. Our simulation results show that the escape time decreases with the increase of the Péclet number, which is not noticeable between the two stages of the escape process, based on whether the center of mass of the polymer is inside or outside the nanochannel. However, the monomer motion trajectory of the active polymer is very different from that of the passive polymer, similar to the snake-like motion with uniform velocity. The passive polymer, however, is in constant fugitive motion with increased velocity at the tail end of the escape. Our work is vital for understanding the escape dynamics of active ring polymers in the confined nanochannel, which provides new perspectives on their characterization and analysis.
Collapse
Affiliation(s)
- Chuqiao Li
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| | - Qiaoyue Chen
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| | - Mingming Ding
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Wang Z, Ziolek RM, Tsige M. Constraints on Knot Insertion, Not Internal Jamming, Control Polycatenane Translocation Dynamics through Crystalline Pores. Macromolecules 2023; 56:3238-3245. [PMID: 37128623 PMCID: PMC10141125 DOI: 10.1021/acs.macromol.2c02565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/15/2023] [Indexed: 05/03/2023]
Abstract
The translocation of polymers through pores and channels is an archetypal process in biology and is widely studied and exploited for applications in bio- and nanotechnology. In recent times, the translocation of polymers of various different topologies has been studied both experimentally and by computer simulation. However, in some cases, a clear understanding of the precise mechanisms that drive their translocation dynamics can be challenging to derive. Experimental methods are able to provide statistical details of polymer translocation, but computer simulations are uniquely placed to uncover a finer level of mechanistic understanding. In this work, we use high-throughput molecular simulations to reveal the importance that knot insertion rates play in controlling translocation dynamics in the small pore limit, where unexpected nonpower law behavior emerges. This work both provides new predictive understanding of polycatenane translocation and shows the importance of carefully considering the role of the definition of translocation itself.
Collapse
Affiliation(s)
- Zifeng Wang
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Robert M. Ziolek
- Biological
Physics and Soft Matter Group, Department of Physics, King’s College London, London WC2R 2LS, United Kingdom
| | - Mesfin Tsige
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
5
|
Wang C, Hu HX, Zhou YL, Zhao B, Luo MB. Translocation of a Self-propelled Polymer through a Narrow Pore. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Wang Z, Wang R, Lu Y, An L, Shi AC, Wang ZG. Mechanisms of Flow-Induced Polymer Translocation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhenhua Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Ruishu Wang
- Department of Mathematics, Jilin University, Changchun 130012, P. R. China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Translocation, Rejection and Trapping of Polyampholytes. Polymers (Basel) 2022; 14:polym14040797. [PMID: 35215709 PMCID: PMC8877523 DOI: 10.3390/polym14040797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/04/2022] Open
Abstract
Polyampholytes (PA) are a special class of polymers comprising both positive and negative monomers along their sequence. Most proteins have positive and negative residues and are PAs. Proteins have a well-defined sequence while synthetic PAs have a random charge sequence. We investigated the translocation behavior of random polyampholyte chains through a pore under the action of an electric field by means of Monte Carlo simulations. The simulations incorporated a realistic translocation potential profile along an extended asymmetric pore and translocation was studied for both directions of engagement. The study was conducted from the perspective of statistics for disordered systems. The translocation behavior (translocation vs. rejection) was recorded for all 220 sequences comprised of N = 20 charged monomers. The results were compared with those for 107 random sequences of N = 40 to better demonstrate asymptotic laws. At early times, rejection was mainly controlled by the charge sequence of the head part, but late translocation/rejection was governed by the escape from a trapped state over an antagonistic barrier built up along the sequence. The probability distribution of translocation times from all successful attempts revealed a power-law tail. At finite times, there was a population of trapped sequences that relaxed very slowly (logarithmically) with time. If a subensemble of sequences with prescribed net charge was considered the power-law decay was steeper for a more favorable net charge. Our findings were rationalized by theoretical arguments developed for long chains. We also provided operational criteria for the translocation behavior of a sequence, explaining the selection by the translocation process. From the perspective of protein translocation, our findings can help rationalize the behavior of intrinsically disordered proteins (IDPs), which can be modeled as polyampholytes. Most IDP sequences have a strong net charge favoring translocation. Even for sequences with those large net charges, the translocation times remained very dispersed and the translocation was highly sequence-selective.
Collapse
|
8
|
Abstract
The force- and flow-induced translocation processes of linear and ring polymers are studied using a combination of multiparticle collision dynamics and molecular dynamics, focusing on the behavior of the polymer translocation time. We compare the force- and flow-induced translocations of linear and ring polymers. It is found that when the translocation time (τ*) is characterized by scaling exponents, δ, δ', and α, via the relations τ* ∼ fδNα and τ* ∼ Jδ'Nα, the scaling exponents are not constants. For long chains tested, α = 1.0 for both force- and flow-induced translocations. The difference between the force- and flow-induced translocations stems from different monomer crowding effects due to distinct flow patterns outside the channel. Furthermore, general relations for polymer translocation time are derived for these two translocation processes, which are in good agreement with the simulation results. Our results provide clear molecular pictures for the force- and flow-induced translocations, which shed light on the understanding of translocation dynamics and provide guidance for practical applications such as molecular sequencing and ultrafiltration.
Collapse
Affiliation(s)
- Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhenhua Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
9
|
Chen J, Chen X, Sun LZ, Xu XJ, Luo MB. Translocation of a looped polymer threading through a nanopore. SOFT MATTER 2021; 17:4342-4351. [PMID: 33908563 DOI: 10.1039/d1sm00007a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent experiments reported that the complicated translocation dynamics of a looped DNA chain through a nanopore can be detected by ionic current blockade profiles. Inspired by the experimental results, we systematically study the translocation dynamics of a looped polymer, formed by three building blocks of a loop in the middle and two tails of the same length connected with the loop, by using Langevin dynamics simulations. Based on two entering modes (tail-leading and loop-leading) and three translocation orders (loop-tail-tail, tail-loop-tail, and tail-tail-loop), the translocation of the looped polymer is classified into six translocation pathways, corresponding to different current blockade profiles. The probabilities of the six translocation pathways are dependent on the loop length, polymer length, and pore radius. Moreover, the translocation times of the entire polymer and the loop are investigated. We find that the two translocation times show different dependencies on the translocation pathways and on the lengths of the loop and the entire polymer.
Collapse
Affiliation(s)
- Jia Chen
- Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Xian Chen
- Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Xiao-Jun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
10
|
Tilahun M, Tatek YB. End‐Pulled Translocation of a Star Polymer Out of a Confining Cylindrical Cavity. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mesay Tilahun
- Department of Physics Addis Ababa University Addis Ababa 1176 Ethiopia
| | - Yergou B. Tatek
- Department of Physics Addis Ababa University Addis Ababa 1176 Ethiopia
| |
Collapse
|
11
|
Affiliation(s)
- Karthik Nagarajan
- K. Nagarajan, Prof. S. B. ChenDepartment of Chemical & Biomolecular EngineeringNational University of Singapore Singapore 117585 Singapore
| | - Shing Bor Chen
- K. Nagarajan, Prof. S. B. ChenDepartment of Chemical & Biomolecular EngineeringNational University of Singapore Singapore 117585 Singapore
| |
Collapse
|
12
|
Abstract
Although nanopores have shown tremendous promise for use in DNA sequencing, the rate of translocation through most pores studied previously is too rapid for the genetic information to be read accurately. In this study, dissipative particle dynamics simulations were employed to investigate the feasibility of using tortuous nanopores to control the rate of polyelectrolyte translocation. Unlike many previous studies, our simulation method incorporates the effects of hydrodynamic and electrostatic interactions and the spatial variation of electric field strength. The average translocation time, ⟨τ⟩, increases with the pore length and tortuosity but decreases as the pore width increases. For the longest pore investigated, the introduction of tortuosity results in ⟨τ⟩ increasing by as much as 187% as compared to a straight pore. The temporal variation of bond tension indicates that slower translocation in tortuous nanopores is caused by inhibition of tension propagation.
Collapse
Affiliation(s)
- Karthik Nagarajan
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 117585 , Singapore
| | - Shing Bor Chen
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 117585 , Singapore
| |
Collapse
|
13
|
Nagarajan K, Chen SB. Flow-Induced Translocation of Star Polymers through a Nanopore. J Phys Chem B 2019; 123:7919-7925. [PMID: 31461281 DOI: 10.1021/acs.jpcb.9b07066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The flow-induced translocation of star polymers through a cylindrical nanopore has been studied using dissipative particle dynamics (DPD) simulations. The number of arms, f, was varied with the total number of monomers, N, kept constant. The effect of simulating the capture of the polymer into the pore upon the mean translocation time, <τt>, has been investigated by varying the chain's initial location. The results indicate that the incorporation of the capture process results in a reduction of <τt> by up to 15%. This is because the chain's initial location affects the extent of its stretching along the flow direction during translocation. <τt> exhibits nonmonotonic variation with f, in agreement with recently reported results for electric field-driven translocation of star polymers. Its value is larger and shows greater variation with f when the solvent quality is better. For the same value of f, the capture occurs faster in a good solvent. In addition, <τt> is greater for a semiflexible chain than its flexible counterpart as the time required for the branch point to enter the nanopore is longer in the former case.
Collapse
Affiliation(s)
- Karthik Nagarajan
- Department of Chemical & Biomolecular Engineering , National University of Singapore , 117585 Singapore
| | - Shing Bor Chen
- Department of Chemical & Biomolecular Engineering , National University of Singapore , 117585 Singapore
| |
Collapse
|
14
|
Abstract
The electric field driven translocation of charged star polymers through a cylindrical nanopore has been studied using dissipative particle dynamics simulations. The critical field strength required to induce translocation depends on both the number of arms and the number of beads per arm. It may therefore be possible to separate star polyelectrolytes of different arm lengths using electric field driven translocation through a nanopore. The average translocation time exhibits nonmonotonic variation with the number of arms for good solvent conditions. During translocation, a star polymer with many arms is stretched along the pore axis to a lesser extent as compared to its linear counterpart. Unlike a linear chain that shows tension propagation with large tensions for bonds about to enter the pore, a star has the tensest bonds closest to the branch point whose connectivity to multiple arms raises difficulty for its entry and passage.
Collapse
Affiliation(s)
- Karthik Nagarajan
- Department of Chemical & Biomolecular Engineering , National University of Singapore , 117585 , Singapore
| | - Shing Bor Chen
- Department of Chemical & Biomolecular Engineering , National University of Singapore , 117585 , Singapore
| |
Collapse
|