1
|
Zhang J, Jia K, Huang Y, Liu X, Xu Q, Wang W, Zhang R, Liu B, Zheng L, Chen H, Gao P, Meng S, Lin L, Peng H, Liu Z. Intrinsic Wettability in Pristine Graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103620. [PMID: 34808008 DOI: 10.1002/adma.202103620] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The wettability of graphene remains controversial owing to its high sensitivity to the surroundings, which is reflected by the wide range of reported water contact angle (WCA). Specifically, the surface contamination and underlying substrate would strongly alter the intrinsic wettability of graphene. Here, the intrinsic wettability of graphene is investigated by measuring WCA on suspended, superclean graphene membrane using environmental scanning electron microscope. An extremely low WCA with an average value ≈30° is observed, confirming the hydrophilic nature of pristine graphene. This high hydrophilicity originates from the charge transfer between graphene and water molecules through H-π interaction. The work provides a deep understanding of the water-graphene interaction and opens up a new way for measuring the surface properties of 2D materials.
Collapse
Affiliation(s)
- Jincan Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Kaicheng Jia
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Yongfeng Huang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaoting Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Qiuhao Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wendong Wang
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| | - Rui Zhang
- Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
| | - Bingyao Liu
- Beijing Graphene Institute, Beijing, 100095, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Liming Zheng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Heng Chen
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Peng Gao
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
| | - Sheng Meng
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Lin
- Materials Science and Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| |
Collapse
|