1
|
Czernek J, Brus J, Czerneková V. A computational inspection of the dissociation energy of mid-sized organic dimers. J Chem Phys 2022; 156:204303. [DOI: 10.1063/5.0093557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The gas-phase value of the dissociation energy ( D0) is a key parameter employed in both experimental and theoretical descriptions of noncovalent complexes. The D0 data were obtained for a set of mid-sized organic dimers in their global minima which was located using geometry optimizations that applied ample basis sets together with either the conventional second-order Møller–Plesset (MP2) method or several dispersion-corrected density-functional theory (DFT-D) schemes. The harmonic vibrational zero-point (VZP) and deformation energies from the MP2 calculations were combined with electronic energies from the coupled cluster theory with singles, doubles, and iterative triples [CCSD(T)] extrapolated to the complete basis set (CBS) limit to estimate D0 with the aim of inspecting values that were most recently measured, and an analogous comparison was performed using the DFT-D data. In at least one case (namely, for the aniline⋯methane cluster), the D0 estimate that employed the CCSD(T)/CBS energies differed from experiment in the way that could not be explained by a possible deficiency in the VZP contribution. Curiously, one of the DFT-D schemes (namely, the B3LYP-D3/def2-QZVPPD) was able to reproduce all measured D0 values to within 1.0 kJ/mol from experimental error bars. These findings show the need for further measurements and computations of some of the complexes. In order to facilitate such studies, the physical nature of intermolecular interactions in the investigated dimers was analyzed by means of the DFT-based symmetry-adapted perturbation theory.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 162 06 Praha 6, The Czech Republic
| | - Jiří Brus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 162 06 Praha 6, The Czech Republic
| | - Vladimíra Czerneková
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, The Czech Republic
| |
Collapse
|
2
|
Hazrah AS, Nanayakkara S, Seifert NA, Kraka E, Jäger W. Structural study of 1- and 2-naphthol: new insights into the non-covalent H-H interaction in cis-1-naphthol. Phys Chem Chem Phys 2022; 24:3722-3732. [PMID: 35080568 DOI: 10.1039/d1cp05632h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous microwave studies of naphthol monomers were supplemented by measuring spectra of all 13C mono-substituted isotopologues of the cis- and trans-conformers of 1-naphthol and 2-naphthol in their natural abundances. The resulting data were utilized to determine substitution structures and so-called semi-experimental effective structures. Results from electronic structure calculations show that the OH group of cis-1-naphthol points ≈6° out of plane, which is consistent with the inertial defect data of cis- and trans-1-naphthol. The non-planarity of cis-1-naphthol is a result of a close-contact H-atom-H-atom interaction. This type of H-H interaction has been the subject of much controversy in the past and we provide here an in-depth theoretical analysis of it. The naphthol system is particularly well-suited for such analysis as it provides internal standards with its four different isomers. The methods used include quantum theory of atoms in molecules, non-covalent interactions, independent gradient model, local vibrational mode, charge model 5, and natural bond orbital analyses. We demonstrate that the close-contact H-H interaction is neither a purely attractive nor repulsive interaction, but rather a mixture of the two.
Collapse
Affiliation(s)
- Arsh S Hazrah
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| | - Sadisha Nanayakkara
- Department of Chemistry, Southern Methodist University, Dallas, TX, 75275-0314, USA.
| | - Nathan A Seifert
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, Dallas, TX, 75275-0314, USA.
| | - Wolfgang Jäger
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
3
|
The account of atom-pair dispersion interaction on the stabilization of C–H/π bound phenylacetylene–hydrocarbon complexes. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02757-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Knochenmuss R, Sinha RK, Leutwyler S. Benchmark Experimental Gas-Phase Intermolecular Dissociation Energies by the SEP-R2PI Method. Annu Rev Phys Chem 2020; 71:189-211. [DOI: 10.1146/annurev-physchem-050317-014224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gas-phase ground-state dissociation energy D0( S0) of an isolated and cold bimolecular complex is a fundamental measure of the intermolecular interaction strength between its constituents. Accurate D0 values are important for the understanding of intermolecular bonding, for benchmarking high-level theoretical calculations, and for the parameterization of dispersion-corrected density functionals or force-field models that are used in fields ranging from crystallography to biochemistry. We review experimental measurements of the gas-phase D0( S0) and D0( S1) values of 55 different M⋅S complexes, where M is a (hetero)aromatic molecule and S is a closed-shell solvent atom or molecule. The experiments employ the triply resonant SEP-R2PI laser method, which involves M-centered ( S0 → S1) electronic excitation, followed by S1 → S0 stimulated emission spanning a range of S0 state vibrational levels. At sufficiently high vibrational energy, vibrational predissociation of the M⋅S complex occurs. A total of 49 dissociation energies were bracketed to within ≤1.0 kJ/mol, providing a large experimental database of accurate noncovalent interactions.
Collapse
Affiliation(s)
- Richard Knochenmuss
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Rajeev K. Sinha
- Department of Atomic and Molecular Physics, Manipal University, Manipal, Karnataka 576104, India
| | - Samuel Leutwyler
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Knochenmuss R, Sinha RK, Balmer FA, Ottiger P, Leutwyler S. Intermolecular dissociation energies of 1-naphthol complexes with large dispersion-energy donors: Decalins and adamantane. J Chem Phys 2020; 152:104304. [PMID: 32171216 DOI: 10.1063/1.5144773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The ground-state intermolecular dissociation energies D0(S0) of supersonic-jet cooled intermolecular complexes of 1-naphthol (1NpOH) with the bi- and tricycloalkanes trans-decalin, cis-decalin, and adamantane were measured using the stimulated-emission-pumping/resonant two-photon ionization (SEP-R2PI) method. Using UV/UV holeburning, we identified two isomers (A and B) of the adamantane and trans-decalin complexes and four isomers (A-D) of the cis-decalin complex. For 1NpOH·adamantane A and B, the D0(S0) values are 21.6 ± 0.15 kJ/mol and 21.2 ± 0.32 kJ/mol, those of 1NpOH·trans-decalin A and B are 28.7 ± 0.3 kJ/mol and 28.1 ± 0.9 kJ/mol, and those of 1NpOH·cis-decalin A and B are 28.9 ± 0.15 kJ/mol and 28.7 ± 0.3 kJ/mol. Upon S0 → S1 electronic excitation of the 1NpOH moiety, the dissociation energies of adamantane, trans-decalin, and the cis-decalin isomer C change by <1% and those of cis-decalin isomers A, B, and D increase only slightly (1%-3%). This implies that the hydrocarbons are dispersively adsorbed to a naphthalene "face." Calculations using the dispersion-corrected density functional theory methods B97-D3 and B3LYP-D3 indeed predict that the stable structures have face geometries. The B97-D3 calculated D0(S0) values are within 1 kJ/mol of the experiment, while B3LYP-D3 predicts D0 values that are 1.4-3.3 kJ/mol larger. Although adamantane has been recommended as a "dispersion-energy donor," the binding energies of the trans- and cis-decalin adducts to 1NpOH are 30% larger than that of adamantane. In fact, the D0 value of 1NpOH·adamantane is close to that of 1NpOH·cyclohexane, reflecting the nearly identical contact layer between the two molecules.
Collapse
Affiliation(s)
- Richard Knochenmuss
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Rajeev K Sinha
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Franziska A Balmer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Philipp Ottiger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Samuel Leutwyler
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
6
|
Knochenmuss R, Sinha RK, Leutwyler S. Face, Notch, or Edge? Intermolecular dissociation energies of 1-naphthol complexes with linear molecules. J Chem Phys 2019; 150:234303. [DOI: 10.1063/1.5100139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Richard Knochenmuss
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Rajeev K. Sinha
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Samuel Leutwyler
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
7
|
Knochenmuss R, Sinha RK, Poblotzki A, Den T, Leutwyler S. Intermolecular dissociation energies of hydrogen-bonded 1-naphthol complexes. J Chem Phys 2018; 149:204311. [DOI: 10.1063/1.5055720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Richard Knochenmuss
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Rajeev K. Sinha
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Anja Poblotzki
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Takuya Den
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Samuel Leutwyler
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|