1
|
Desmarais JK, Maul J, Civalleri B, Erba A, Vignale G, Pittalis S. Spin Currents via the Gauge Principle for Meta-Generalized Gradient Exchange-Correlation Functionals. PHYSICAL REVIEW LETTERS 2024; 132:256401. [PMID: 38996240 DOI: 10.1103/physrevlett.132.256401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/15/2024] [Indexed: 07/14/2024]
Abstract
The prominence of density functional theory in the field of electronic structure computation stems from its ability to usefully balance accuracy and computational effort. At the base of this ability is a functional of the electron density: the exchange-correlation energy. This functional satisfies known exact conditions that guide the derivation of approximations. The strongly constrained and appropriately normed (SCAN) approximation stands out as a successful, modern, example. In this Letter, we demonstrate how the SU(2) gauge invariance of the exchange-correlation functional in spin current density functional theory allows us to add an explicit dependence on spin currents in the SCAN functional (here called JSCAN)-and similar meta-generalized-gradient functional approximations-solely invoking first principles. In passing, a spin-current dependent generalization of the electron localization function (here called JELF) is also derived. The extended forms are implemented in a developer's version of the crystal23 program. Applications on molecules and materials confirm the practical relevance of the extensions.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefano Pittalis
- Istituto Nanoscienze, Consiglio Nazionale delle Ricerche, Via Campi 213A, I-41125 Modena, Italy
| |
Collapse
|
2
|
Patra A, Pipim GB, Krylov AI, Mallikarjun Sharada S. Performance of Density Functionals for Excited-State Properties of Isolated Chromophores and Exciplexes: Emission Spectra, Solvatochromic Shifts, and Charge-Transfer Character. J Chem Theory Comput 2024; 20:2520-2537. [PMID: 38488640 DOI: 10.1021/acs.jctc.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This study assesses the performance of various meta-generalized gradient approximation (meta-GGA), global hybrid, and range-separated hybrid (RSH) density functionals in capturing the excited-state properties of organic chromophores and their excited-state complexes (exciplexes). Motivated by their uses in solar energy harvesting and photoredox CO2 reduction, we use oligo-(p-phenylenes) and their excited-state complexes with triethylamine as model systems. We focus on the fluorescence properties of these systems, specifically emission energies. We also consider solvatochromic shifts and wave function characteristics. The latter is described by using reduced quantities such as natural transition orbitals (NTOs) and exciton descriptors. The functionals are benchmarked against the experimental fluorescence spectra and the equation-of-motion coupled-cluster method with single and double excitations. Both in isolated chromophores and in exciplexes, meta-GGA functionals drastically underestimate the emission energies and exhibit significant exciton delocalization and anticorrelation between electron and hole motion. The performance of global hybrid functionals is strongly dependent on the percentage of exact exchange. Our study identifies RSH GGAs as the best-performing functionals, with ωPBE demonstrating the best agreement with experimental results. RSH meta-GGAs often overestimate emission energies in exciplexes and yield larger hole NTOs. Their performance can be improved by optimally tuning the range-separation parameter.
Collapse
Affiliation(s)
- Abhilash Patra
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - George Baffour Pipim
- Department of Chemistry, University of Southern California, Los Angeles ,California 90089, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles ,California 90089, United States
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles ,California 90089, United States
| |
Collapse
|
3
|
Butera V. Density functional theory methods applied to homogeneous and heterogeneous catalysis: a short review and a practical user guide. Phys Chem Chem Phys 2024; 26:7950-7970. [PMID: 38385534 DOI: 10.1039/d4cp00266k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The application of density functional theory (DFT) methods in catalysis has been growing fast in the last few decades thanks to both the availability of more powerful high computing resources and the development of new efficient approximations and approaches. DFT calculations allow for the understanding of crucial catalytic aspects that are difficult or even impossible to access by experiments, thus contributing to faster development of more efficient and selective catalysts. Depending on the catalytic system and properties under investigation, different approaches should be used. Moreover, the reliability of the obtained results deeply depends on the approximations involved in both the selected method and model. This review addresses chemists, physicists and materials scientists whose interest deals with the application of DFT-based computational tools in both homogeneous catalysis and heterogeneous catalysis. First, a brief introduction to DFT is presented. Then, the main approaches based on atomic centered basis sets and plane waves are discussed, underlining the main differences, advantages and limitations. Eventually, guidance towards the selection of the catalytic model is given, with a final focus on the evaluation of the energy barriers, which represents a crucial step in all catalytic processes. Overall, the review represents a rational and practical guide for both beginners and more experienced users involved in the wide field of catalysis.
Collapse
Affiliation(s)
- Valeria Butera
- CEITEC - Central European Institute of Technology Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
- Department of Science and Biological Chemical and Pharmaceutical Technologies, University of Palermo, Palermo 90128, Italy.
| |
Collapse
|
4
|
Ning J, Lane C, Barbiellini B, Markiewicz RS, Bansil A, Ruzsinszky A, Perdew JP, Sun J. Comparing first-principles density functionals plus corrections for the lattice dynamics of YBa2Cu3O6. J Chem Phys 2024; 160:064106. [PMID: 38341785 DOI: 10.1063/5.0181349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
The enigmatic mechanism underlying unconventional high-temperature superconductivity, especially the role of lattice dynamics, has remained a subject of debate. Theoretical insights have long been hindered due to the lack of an accurate first-principles description of the lattice dynamics of cuprates. Recently, using the r2SCAN meta-generalized gradient approximation (meta-GGA) functional, we have been able to achieve accurate phonon spectra of an insulating cuprate YBa2Cu3O6 and discover significant magnetoelastic coupling in experimentally interesting Cu-O bond stretching optical modes [Ning et al., Phys. Rev. B 107, 045126 (2023)]. We extend this work by comparing Perdew-Burke-Ernzerhof and r2SCAN performances with corrections from the on-site Hubbard U and the D4 van der Waals (vdW) methods, aiming at further understanding on both the materials science side and the density functional side. We demonstrate the importance of vdW and self-interaction corrections for accurate first-principles YBa2Cu3O6 lattice dynamics. Since r2SCAN by itself partially accounts for these effects, the good performance of r2SCAN is now more fully explained. In addition, the performances of the Tao-Mo series of meta-GGAs, which are constructed in a different way from the strongly constrained and appropriately normed (SCAN) meta-GGA and its revised version r2SCAN, are also compared and discussed.
Collapse
Affiliation(s)
- Jinliang Ning
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
| | - Christopher Lane
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Bernardo Barbiellini
- Department of Physics, School of Engineering Science, LUT University, FI-53851 Lappeenranta, Finland
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Robert S Markiewicz
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Arun Bansil
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Adrienn Ruzsinszky
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
| | - John P Perdew
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
5
|
Rani D, Jana S, K Niranjan M, Samal P. First-principle investigation of structural, electronic, and phase stabilities in chalcopyrite semiconductors: insights from Meta-GGA functionals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:165502. [PMID: 38194716 DOI: 10.1088/1361-648x/ad1ca3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
We undertake a comprehensive first-principles investigation into the factors influencing the optoelectronic efficiencies of PIQIIIR2VIchalcopyrite semiconductors. The structural attributes, electronic properties, and phase stabilities are explored using various meta-GGA exchange-correlation (XC) functionals within the density functional framework. In particular, we assess the relative performance of these XC functionals in obtaining estimates of various relevant parameters. The structural parameteruin chalcopyrite semiconductors is a noteworthy aspect, as it is intrinsically tied to the extent of orbital hybridization between distinct atoms and thereby strongly influences the electronic properties. In general, the application of widely used GGA-PBE XC functional to these chalcopyrites results in unreliable predictions of band gaps and 'u' parameter due to delocalization errors that in turn arise due to the inclusion ofdandfcore electrons. While hybrid functionals offer remarkable accuracy through state-of-the-art methods, their main drawback lies in their computational expense and resource demands. Our findings strongly suggest that in comparison to GGA-PBE, the meta-GGA XC functionals perform quite well and provide results that closely align with experimental values. In particular, ther2SCAN andrMGGAC XC functionals are preferable and superior for investigating chalcopyrites and other solid-state systems. This preference is rooted in their excellent performance and substantially reduced computational costs compared to hybrid functionals.
Collapse
Affiliation(s)
- Dimple Rani
- School of Physical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Jatni 752050, India
| | - Subrata Jana
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Manish K Niranjan
- Department of Physics, Indian Institute of Technology, Hyderabad, India
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Jatni 752050, India
| |
Collapse
|
6
|
Francisco H, Cancio AC, Trickey SB. Reworking the Tao-Mo exchange-correlation functional. I. Reconsideration and simplification. J Chem Phys 2023; 159:214102. [PMID: 38038713 DOI: 10.1063/5.0167868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
The revised, regularized Tao-Mo (rregTM) exchange-correlation density functional approximation (DFA) [A. Patra, S. Jana, and P. Samal, J. Chem. Phys. 153, 184112 (2020) and Jana et al., J. Chem. Phys. 155, 024103 (2021)] resolves the order-of-limits problem in the original TM formulation while preserving its valuable essential behaviors. Those include performance on standard thermochemistry and solid data sets that is competitive with that of the most widely explored meta-generalized-gradient-approximation DFAs (SCAN and r2SCAN) while also providing superior performance on elemental solid magnetization. Puzzlingly however, rregTM proved to be intractable for de-orbitalization via the approach of Mejía-Rodríguez and Trickey [Phys. Rev. A 96, 052512 (2017)]. We report investigation that leads to diagnosis of how the regularization in rregTM of the z indicator functions (z = the ratio of the von-Weizsäcker and Kohn-Sham kinetic energy densities) leads to non-physical behavior. We propose a simpler regularization that eliminates those oddities and that can be calibrated to reproduce the good error patterns of rregTM. We denote this version as simplified, regularized Tao-Mo, sregTM. We also show that it is unnecessary to use rregTM correlation with sregTM exchange: Perdew-Burke-Ernzerhof correlation is sufficient. The subsequent paper shows how sregTM enables some progress on de-orbitalization.
Collapse
Affiliation(s)
- H Francisco
- Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, USA
| | - A C Cancio
- Center for Computational Nanoscience, Department of Physics and Astronomy, Ball State University, Muncie, Indiana 47306, USA
| | - S B Trickey
- Quantum Theory Project, Department of Physics and Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
7
|
Jana S, Constantin LA, Samal P. Density functional applications of jellium with a local gap model correlation energy functional. J Chem Phys 2023; 159:114109. [PMID: 37721324 DOI: 10.1063/5.0160961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
We develop a realistic density functional approximation for the local gap, which is based on a semilocal indicator that shows good screening properties. The local band model has remarkable density scaling behaviors and works properly for the helium isoelectronic series for the atoms of the Periodic Table, as well as for the non-relativistic noble atom series (up to 2022 e-). Due to these desirable properties, we implement the local gap model in the jellium-with-gap correlation energy, developing the local-density-approximation-with-gap correlation functional (named LDAg) that correctly gives correlation energies of atoms comparable with the LDA ones but shows an improvement for ionization potential of atoms and molecules. Thus, LDAg seems to be an interesting and useful tool in density functional theory.
Collapse
Affiliation(s)
- Subrata Jana
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Lucian A Constantin
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
8
|
Ghosh A, Jana S, Rauch T, Tran F, Marques MAL, Botti S, Constantin L, Niranjan MK, Samal P. Efficient and improved prediction of the band offsets at semiconductorheterojunctions from meta-GGA density functionals: a benchmark study. J Chem Phys 2022; 157:124108. [DOI: 10.1063/5.0111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Accurate theoretical prediction of the band offsets at interfaces of semiconductor heterostructures can of-ten be quite challenging. Although density functional theory has been reasonably successful to carry outsuch calculations and efficient and accurate semilocal functionals are desirable to reduce the computational cost. In general, the semilocal functionals based on the generalized gradient approximation (GGA) significantly underestimate the bulk band gaps. This, in turn, results in inaccurate estimates of the band offsets at the heterointerfaces. In this paper, we investigate the performance of several advanced meta-GGA functionals in the computational prediction of band offsets at semiconductor heterojunctions. In particular, we investigate the performance of r 2 SCAN (revised strongly-constrained and appropriately-normed functional), rMGGAC (revised semilocal functional based on cuspless hydrogen model and Pauli kinetic energy density functional), mTASK (modified Aschebrock and Kümmel meta-GGA functional), and LMBJ (local modified Becke-Johnson) exchange-correlation functionals. Our results strongly suggest that these meta-GGA functionals for supercell calculations perform quite well, especially, when compared to computationally more demanding GW calculations. We also present band offsets calculated using ionization potentials and electron affinities, as well as band alignment via the branch point energies. Overall, our study shows that the aforementioned meta-GGA functionals can be used within the DFT framework to estimate the band offsets in semiconductor heterostructures with predictive accuracy.
Collapse
Affiliation(s)
| | - Subrata Jana
- Department of Chemistry and Biochemistry, The Ohio State University, United States of America
| | - Tomas Rauch
- Friedrich Schiller Universität Jena Institut für Festkörpertheorie und -optik, Germany
| | - Fabien Tran
- Institute of Materials Chemistry, Vienna University of Technology, Austria
| | | | - Silvana Botti
- Institut für Festkörpertheorie und -optik, Friedrich Schiller Universität Jena Institut für Festkörpertheorie und -optik, Germany
| | - Lucian Constantin
- Department of Physics, Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy, Italy
| | | | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, India
| |
Collapse
|
9
|
Holzer C, Franzke YJ. A Local Hybrid Exchange Functional Approximation from First Principles. J Chem Phys 2022; 157:034108. [DOI: 10.1063/5.0100439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Local hybrid functionals are a more flexible class of density functional approximations allowing for a position-dependent admixture of exact exchange. This additional flexibility, however, comes with a more involved mathematical form and a more complicated design. A common denominator for previously constructed local hybrid funtionals is usage of thermochemical benchmark data to construct these functionals. Herein, we design a local hybrid functional without relying on benchmark data. Instead, we construct it in a more ab initio manner, following the principles of modern meta-generalized gradient approximations and considering theoretical constrains. To achieve this, we make use of the density matrix expansion and a local mixing function based on an approximate correlation length. The accuracy of the developed density functional approximation is assessed for thermochemistry, excitation energies, polarizabilities, magnetizabilities, NMR spin-spincoupling constants, NMR shieldings and shifts, as well as EPR g-tensors and hyperfine coupling constants. Here, the new exchange functional shows a robust performance and is especially well suited for atomization energies, barrier heights, excitation energies, NMR coupling constants, and EPR properties, whereas it looses some ground for the NMR shifts.Therefore, the designed functional is a major step forwards for functionals that have been designed from first principles.
Collapse
Affiliation(s)
- Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruher Institut für Technologie Fakultät für Physik, Germany
| | - Yannick J. Franzke
- Fachbereich Chemie, Philipps-Universität Marburg Fachbereich Chemie, Germany
| |
Collapse
|
10
|
Jana S, Constantin LA, Smiga S, Samal P. Solid-state performance of a meta-GGA screened hybrid density functional constructed from Pauli kinetic enhancement factor dependent semilocal exchange hole. J Chem Phys 2022; 157:024102. [DOI: 10.1063/5.0096674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The semilocal form of the exchange hole is highly useful in developing non-local range-separated hybrid density functionals for finite and extended systems. The way to construct the conventional exact exchange hole model is based on either the Taylor series expansion or the reverse engineering technique from the corresponding exchange energy functional. Although the latter technique is quite popular in context of generalized gradient approximation (GGA) functionals, the same for the meta-GGA functionals is not so much explored. Thus, in this study, we propose a reverse-engineered semilocal exchange hole of a meta-GGA functional, that depends only on the meta-GGA ingredient α (also known as the Pauli kinetic energy enhancement factor). The model is used subsequently to design the short-range-separated meta-GGA hybrid density functional. We show that the present method can be successfully applied for several challenging problems in the context of solids, especially for which the GGA based hybrid fails drastically. This assessment proves that the present functional is quite useful for materials sciences. Finally, we also use this method for several molecular test cases, where the results are also as comparative as its base semilocal functional.
Collapse
Affiliation(s)
- Subrata Jana
- Department of Chemistry and Biochemistry, The Ohio State University, United States of America
| | - Lucian A. Constantin
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy, Italy
| | - Szymon Smiga
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University Institute of Physics, Poland
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, India
| |
Collapse
|
11
|
Patra A, Patra B, Samal P. Accurate band gaps from exchange potentials designed from a cuspless hydrogen density-based exchange hole model. Phys Chem Chem Phys 2022; 24:13633-13640. [PMID: 35611605 DOI: 10.1039/d1cp05425b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The explicit forms of exchange-correlation (XC) potentials, which are not functional derivatives of any XC energy functional, are reasonably efficient in predicting the band gap of materials. The most successful example in this genre is the MBJ [F. Tran et al., Phys. Rev. Lett., 2009 102, 226401] exchange potential, which is based on the asymptotically correct Becke-Roussel (BR) exchange potential. We employ the cuspless hydrogen density and corresponding exchange hole to construct a BR like potential. The modified BR potential is again utilized in the framework of MBJ for band gap calculations. Also, we employ a Laplacian free model of the exchange hole in the framework of MBJ. These methods are analyzed by calculating band gaps of various test sets containing narrow, intermediate, and wide bandgap materials. Besides, we apply these potentials to eighteen ternary semiconductors with a chalcopyrite structure, exciting materials for photovoltaic applications. By comparing them with MBJ, we find that the band gaps obtained using the new potentials are not uniformly larger values than the MBJ potential in all cases. But, in many instances where MBJ overestimates the gap, the new potentials' band gaps are comparatively smaller and closer to the experimental ones. We also show that these potentials can correctly predict the band structure of three-dimensional topological insulators.
Collapse
Affiliation(s)
- Abhilash Patra
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India.
| | - Bikash Patra
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India.
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India.
| |
Collapse
|
12
|
Ghosh A, Jana S, Niranjan MK, Behera SK, Constantin LA, Samal P. Improved electronic structure prediction of chalcopyrite semiconductors from a semilocal density functional based on Pauli kinetic energy enhancement factor. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:075501. [PMID: 34768248 DOI: 10.1088/1361-648x/ac394d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The correct treatment ofdelectrons is of prime importance in order to predict the electronic properties of the prototype chalcopyrite semiconductors. The effect ofdstates is linked with the anion displacement parameteru, which in turn influences the bandgap of these systems. Semilocal exchange-correlation functionals which yield good structural properties of semiconductors and insulators often fail to predict reasonableubecause of the underestimation of the bandgaps arising from the strong interplay betweendelectrons. In the present study, we show that the meta-generalized gradient approximation (meta-GGA) obtained from the cuspless hydrogen density (MGGAC) (2019Phys. Rev.B 100 155140) performs in an improved manner in apprehending the key features of the electronic properties of chalcopyrites, and its bandgaps are comparative to that obtained using state-of-art hybrid methods. Moreover, the present assessment also shows the importance of the Pauli kinetic energy enhancement factor,α= (τ-τW)/τunifin describing thedelectrons in chalcopyrites. The present study strongly suggests that the MGGAC functional within semilocal approximations can be a better and preferred choice to study the chalcopyrites and other solid-state systems due to its superior performance and significantly low computational cost.
Collapse
Affiliation(s)
- Arghya Ghosh
- Department of Physics, Indian Institute of Technology, Hyderabad, India
| | - Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America
| | - Manish K Niranjan
- Department of Physics, Indian Institute of Technology, Hyderabad, India
| | - Sushant Kumar Behera
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Lucian A Constantin
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
13
|
Jana S, Behera SK, Śmiga S, Constantin LA, Samal P. Accurate density functional made more versatile. J Chem Phys 2021; 155:024103. [PMID: 34266258 DOI: 10.1063/5.0051331] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We propose a one-electron self-interaction-free correlation energy functional compatible with the order-of-limit problem-free Tao-Mo (TM) semilocal functional (regTM) [J. Tao and Y. Mo, Phys. Rev. Lett. 117, 073001 (2016) and Patra et al., J. Chem. Phys. 153, 184112 (2020)] to be used for general purpose condensed matter physics and quantum chemistry. The assessment of the proposed functional for large classes of condensed matter and chemical systems shows its improvement in most cases compared to the TM functional, e.g., when applied to the relative energy difference of MnO2 polymorphs. In this respect, the present exchange-correction functional, which incorporates the TM technique of the exchange hole model combined with the slowly varying density correction, can achieve broad applicability, being able to solve difficult solid-state problems.
Collapse
Affiliation(s)
- Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Sushant Kumar Behera
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Szymon Śmiga
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
| | - Lucian A Constantin
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
14
|
Patra A, Jana S, Samal P, Tran F, Kalantari L, Doumont J, Blaha P. Efficient Band Structure Calculation of Two-Dimensional Materials from Semilocal Density Functionals. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:11206-11215. [PMID: 34084266 PMCID: PMC8165698 DOI: 10.1021/acs.jpcc.1c02031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/29/2021] [Indexed: 05/06/2023]
Abstract
The experimental and theoretical realization of two-dimensional (2D) materials is of utmost importance in semiconducting applications. Computational modeling of these systems with satisfactory accuracy and computational efficiency is only feasible with semilocal density functional theory methods. In the search for the most useful method in predicting the band gap of 2D materials, we assess the accuracy of recently developed semilocal exchange-correlation (XC) energy functionals and potentials. Though the explicit forms of exchange-correlation (XC) potentials are very effective against XC energy functionals for the band gap of bulk solids, their performance needs to be investigated for 2D materials. In particular, the LMBJ [J. Chem. Theory Comput.2020, 16, 2654] and GLLB-SC [Phys. Rev. B82, 2010, 115106] potentials are considered for their dominance in bulk band gap calculation. The performance of recently developed meta generalized gradient approximations, like TASK [Phys. Rev. Res.1, 2019, 033082] and MGGAC [Phys. Rev. B. 100, 2019, 155140], is also assessed. We find that the LMBJ potential constructed for 2D materials is not as successful as its parent functional, i.e., MBJ [Phys. Rev. Lett.102, 2009, 226401] in bulk solids. Due to a contribution from the derivative discontinuity, the band gaps obtained with GLLB-SC are in a certain number of cases, albeit not systematically, larger than those obtained with other methods, which leads to better agreement with the quasi-particle band gap obtained from the GW method. The band gaps obtained with TASK and MGGAC can also be quite accurate.
Collapse
Affiliation(s)
- Abhilash Patra
- School
of Physical Sciences, National Institute
of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Subrata Jana
- School
of Physical Sciences, National Institute
of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Prasanjit Samal
- School
of Physical Sciences, National Institute
of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Fabien Tran
- Institute
of Materials Chemistry, Vienna University
of Technology, Getreidemarkt 9/165-TC, Vienna A-1060, Austria
| | - Leila Kalantari
- Institute
of Materials Chemistry, Vienna University
of Technology, Getreidemarkt 9/165-TC, Vienna A-1060, Austria
| | - Jan Doumont
- Institute
of Materials Chemistry, Vienna University
of Technology, Getreidemarkt 9/165-TC, Vienna A-1060, Austria
| | - Peter Blaha
- Institute
of Materials Chemistry, Vienna University
of Technology, Getreidemarkt 9/165-TC, Vienna A-1060, Austria
| |
Collapse
|
15
|
Jana S, Śmiga S, Constantin LA, Samal P. Generalizing Double-Hybrid Density Functionals: Impact of Higher-Order Perturbation Terms. J Chem Theory Comput 2020; 16:7413-7430. [PMID: 33205659 PMCID: PMC7735712 DOI: 10.1021/acs.jctc.0c00823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 11/28/2022]
Abstract
Connections between the Görling-Levy (GL) perturbation theory and the parameters of double-hybrid (DH) density functional are established via adiabatic connection formalism. Moreover, we present a more general DH density functional theory, where the higher-order perturbation terms beyond the second-order GL2 one, such as GL3 and GL4, also contribute. It is shown that a class of DH functionals including previously proposed ones can be formed using the present construction. Based on the proposed formalism, we assess the performance of higher-order DH and long-range corrected DH formed on the Perdew-Burke-Ernzerhof (PBE) semilocal functional and second-order GL2 correlation energy. The underlying construction of DH functionals based on the generalized many-body perturbation approaches is physically appealing in terms of the development of the non-local forms using more accurate and sophisticated semilocal functionals.
Collapse
Affiliation(s)
- Subrata Jana
- School
of Physical Sciences, National Institute
of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Szymon Śmiga
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
| | - Lucian A. Constantin
- Consiglio
Nazionale delle Ricerche CNR-NANO, Istituto
di Nanoscienze, 41125 Modena, Italy
| | - Prasanjit Samal
- School
of Physical Sciences, National Institute
of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
16
|
Patra A, Jana S, Samal P. A way of resolving the order-of-limit problem of Tao–Mo semilocal functional. J Chem Phys 2020; 153:184112. [DOI: 10.1063/5.0025173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Abhilash Patra
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
17
|
Patra A, Jana S, Constantin LA, Chiodo L, Samal P. Improved transition metal surface energies from a generalized gradient approximation developed for quasi two-dimensional systems. J Chem Phys 2020; 152:151101. [PMID: 32321265 DOI: 10.1063/1.5145367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonuniform density scaling in the quasi-two-dimensional (quasi-2D) regime is an important and challenging aspect of the density functional theory. Semilocal exchange-correlation energy functionals, developed by solving the dimensional crossover criterion in the quasi-2D regime, have great theoretical and practical importance. However, the only semilocal generalized gradient approximation (GGA) that has been designed to satisfy this criterion is the Q2D-GGA [L. Chiodo et al., Phys. Rev. Lett. 108, 126402 (2012)]. Here, we establish the applicability, broadness, and accuracy of the Q2D-GGA functional by performing an extensive assessment of this functional for transition metal surface energies. The important characteristic of the surface density localization and oscillation due to the rearrangement of the d electrons is also shown for different metal surfaces.
Collapse
Affiliation(s)
- Abhilash Patra
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Lucian A Constantin
- Center for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy
| | - Letizia Chiodo
- Department of Engineering, Campus Bio-Medico University of Rome, Via Á del Portillo 21, 00128 Rome, Italy
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
18
|
Jana S, Patra A, Constantin LA, Samal P. Screened range-separated hybrid by balancing the compact and slowly varying density regimes: Satisfaction of local density linear response. J Chem Phys 2020; 152:044111. [PMID: 32007058 DOI: 10.1063/1.5131530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Due to their quantitative accuracy and ability to solve several difficulties, screened range-separated hybrid exchange-correlation functionals are now a standard approach for ab initio simulation of condensed matter systems. However, the screened range-separated hybrid functionals proposed so far are biased either toward compact or slowly varying densities. In this paper, we propose a screened range-separated hybrid functional, named HSEint, which can well describe these density regimes, achieving good accuracy for both molecular and solid-state systems. The semilocal part of the proposed functional is based on the PBEint generalized gradient approximation [E. Fabiano et al., Phys. Rev. B 82, 113104 (2010)], constructed for hybrid interfaces. To improve the functional performance, we employ exact or nearly exact constraints in the construction of range-separated hybrid functional, such as recovering of the local density linear response and semiclassical atom linear response.
Collapse
Affiliation(s)
- Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Abhilash Patra
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Lucian A Constantin
- Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
19
|
Jana S, Constantin LA, Samal P. Accurate Water Properties from an Efficient ab Initio Method. J Chem Theory Comput 2020; 16:974-987. [DOI: 10.1021/acs.jctc.9b01018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Lucian A. Constantin
- Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
20
|
Patra A, Jana S, Samal P. Performance of Tao–Mo Semilocal Functional with rVV10 Dispersion-Correction: Influence of Different Correlation. J Phys Chem A 2019; 123:10582-10593. [DOI: 10.1021/acs.jpca.9b08644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abhilash Patra
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
21
|
Tran F, Doumont J, Blaha P, Marques MAL, Botti S, Bartók AP. On the calculation of the bandgap of periodic solids with MGGA functionals using the total energy. J Chem Phys 2019; 151:161102. [DOI: 10.1063/1.5126393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Fabien Tran
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Jan Doumont
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Peter Blaha
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Miguel A. L. Marques
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany
| | - Silvana Botti
- Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität Jena and European Theoretical Spectroscopy Facility, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Albert P. Bartók
- Rutherford Appleton Laboratory, Scientific Computing Department Science and Technology Facilities Council, Didcot OX11 0QX, United Kingdom
- Department of Physics and Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
22
|
Jana S, Sharma K, Samal P. Improving the Performance of Tao–Mo Non-empirical Density Functional with Broader Applicability in Quantum Chemistry and Materials Science. J Phys Chem A 2019; 123:6356-6369. [DOI: 10.1021/acs.jpca.9b02921] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Kedar Sharma
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
- School of Physics, Indian Institute of Science Education and Research, Maruthamala,
Vithura, Thiruvananthapuram 695551, India
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
23
|
Kovács P, Tran F, Blaha P, Madsen GKH. Comparative study of the PBE and SCAN functionals: The particular case of alkali metals. J Chem Phys 2019; 150:164119. [DOI: 10.1063/1.5092748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Péter Kovács
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Fabien Tran
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Peter Blaha
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Georg K. H. Madsen
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| |
Collapse
|
24
|
Constantin LA, Fabiano E, Della Sala F. Performance of Semilocal Kinetic Energy Functionals for Orbital-Free Density Functional Theory. J Chem Theory Comput 2019; 15:3044-3055. [DOI: 10.1021/acs.jctc.9b00183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucian A. Constantin
- Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy
| | - Eduardo Fabiano
- Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy
- Institute for Microelectronics and Microsystems (CNR-IMM), Campus Unisalento, Via Monteroni, 73100 Lecce, Italy
| | - Fabio Della Sala
- Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy
- Institute for Microelectronics and Microsystems (CNR-IMM), Campus Unisalento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
25
|
Jana S, Sharma K, Samal P. Assessing the performance of the recent meta-GGA density functionals for describing the lattice constants, bulk moduli, and cohesive energies of alkali, alkaline-earth, and transition metals. J Chem Phys 2018; 149:164703. [DOI: 10.1063/1.5047863] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Kedar Sharma
- School of Physics, Indian Institute of Science Education and Research, Maruthamala, Vithura, Thiruvananthapuram 695551, India
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
26
|
Tran F, Kovács P, Kalantari L, Madsen GKH, Blaha P. Orbital-free approximations to the kinetic-energy density in exchange-correlation MGGA functionals: Tests on solids. J Chem Phys 2018; 149:144105. [DOI: 10.1063/1.5048907] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Fabien Tran
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Péter Kovács
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Leila Kalantari
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Georg K. H. Madsen
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Peter Blaha
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| |
Collapse
|
27
|
Jana S, Patra A, Samal P. Efficient lattice constants and energy bandgaps for condensed systems from a meta-GGA level screened range-separated hybrid functional. J Chem Phys 2018; 149:094105. [DOI: 10.1063/1.5037030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Abhilash Patra
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|