1
|
Cotton MW, Golestanian R, Agudo-Canalejo J. Catalysis-Induced Phase Separation and Autoregulation of Enzymatic Activity. PHYSICAL REVIEW LETTERS 2022; 129:158101. [PMID: 36269959 DOI: 10.1103/physrevlett.129.158101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
We present a thermodynamically consistent model describing the dynamics of a multicomponent mixture where one enzyme component catalyzes a reaction between other components. We find that the catalytic activity alone can induce phase separation for sufficiently active systems and large enzymes, without any equilibrium interactions between components. In the limit of fast reaction rates, binodal lines can be calculated using a mapping to an effective free energy. We also explain how this catalysis-induced phase separation can act to autoregulate the enzymatic activity, which points at the biological relevance of this phenomenon.
Collapse
Affiliation(s)
- Matthew W Cotton
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG United Kingdom
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
| | - Ramin Golestanian
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Jaime Agudo-Canalejo
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, D-37077 Göttingen, Germany
| |
Collapse
|
2
|
Transport Properties of Binary Lennard-Jones Mixtures: Insights from Entropy Scaling and Conformal Solution Theory. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Almasi M. Calculation of Virial Coefficients, Joule–Thomson Inversion Curve and Mutual Diffusion for Binary Mixtures. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422030189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Jamali SH, Bardow A, Vlugt TJH, Moultos OA. Generalized Form for Finite-Size Corrections in Mutual Diffusion Coefficients of Multicomponent Mixtures Obtained from Equilibrium Molecular Dynamics Simulation. J Chem Theory Comput 2020; 16:3799-3806. [PMID: 32338889 PMCID: PMC7288667 DOI: 10.1021/acs.jctc.0c00268] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
The system-size dependence
of computed mutual diffusion coefficients
of multicomponent mixtures is investigated, and a generalized correction
term is derived. The generalized finite-size correction term was validated
for the ternary molecular mixture chloroform/acetone/methanol as well
as 28 ternary LJ systems. It is shown that only the diagonal elements of the Fick matrix
show system-size dependency. The finite-size effects of these elements
can be corrected by adding the term derived by Yeh and Hummer (J. Phys. Chem. B2004, 108, 15873–15879). By performing an eigenvalue analysis of the
finite-size effects of the matrix of Fick diffusivities we show that
the eigenvector matrix of Fick diffusivities does not depend on the
size of the simulation box. Only eigenvalues, which describe the speed
of diffusion, depend on the size of the system. An analytic relation
for finite-size effects of the matrix of Maxwell–Stefan diffusivities
was developed. All Maxwell–Stefan diffusivities depend on the
system size, and the required correction depends on the matrix of
thermodynamic factors.
Collapse
Affiliation(s)
- Seyed Hossein Jamali
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - André Bardow
- Institute of Technical Thermodynamics, RWTH Aachen University, 52056 Aachen, Germany.,Energy Process Systems Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, 8092 Zürich, Switzerland
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
5
|
Wu W, Klein T, Kerscher M, Rausch MH, Koller TM, Giraudet C, Fröba AP. Diffusivities in 1-Alcohols Containing Dissolved H 2, He, N 2, CO, or CO 2 Close to Infinite Dilution. J Phys Chem B 2019; 123:8777-8790. [PMID: 31536354 DOI: 10.1021/acs.jpcb.9b06211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influence of the strength of intermolecular interactions on mass diffusive processes remains poorly understood for mixtures of associative liquids with dissolved gases. For contributing to a fundamental understanding of the interplay between liquid structures and mass diffusivities in such systems, dynamic light scattering, Raman spectroscopy, and molecular dynamics simulations were used in this work. As model systems, binary mixtures consisting of the gases hydrogen, helium, nitrogen, carbon monoxide, or carbon dioxide dissolved in ethanol, 1-hexanol, or 1-decanol were selected. Experiments and simulations were performed at macroscopic thermodynamic equilibrium close to infinite dilution of solute for temperatures between 303 and 423 K. The Fick diffusion coefficients and self-diffusivities of the gas solutes increase with increasing temperature, decreasing alkyl chain length of the 1-alcohols, and decreasing molar mass of the solutes except for helium and hydrogen showing the opposite behavior. The analysis of the liquid structure of the mixtures showed that the fraction of hydrogen-bonded alcohol molecules decreases with increasing alkyl chain length and temperature. From the obtained structure-property relationships, a new correlation was developed to predict mass diffusivities in binary mixtures consisting of n-alkanes or 1-alcohols with dissolved gases close to infinite dilution within 10% on average.
Collapse
Affiliation(s)
- Wenchang Wu
- Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT) , Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Paul-Gordan-Straße 8 , 91052 Erlangen , Germany
| | - Tobias Klein
- Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT) , Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Paul-Gordan-Straße 8 , 91052 Erlangen , Germany
| | - Manuel Kerscher
- Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT) , Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Paul-Gordan-Straße 8 , 91052 Erlangen , Germany
| | - Michael H Rausch
- Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT) , Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Paul-Gordan-Straße 8 , 91052 Erlangen , Germany
| | - Thomas M Koller
- Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT) , Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Paul-Gordan-Straße 8 , 91052 Erlangen , Germany
| | - Cédric Giraudet
- Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT) , Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Paul-Gordan-Straße 8 , 91052 Erlangen , Germany
| | - Andreas P Fröba
- Institute of Advanced Optical Technologies-Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT) , Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Paul-Gordan-Straße 8 , 91052 Erlangen , Germany
| |
Collapse
|
6
|
Guevara-Carrion G, Ancherbak S, Mialdun A, Vrabec J, Shevtsova V. Diffusion of methane in supercritical carbon dioxide across the Widom line. Sci Rep 2019; 9:8466. [PMID: 31186475 PMCID: PMC6560060 DOI: 10.1038/s41598-019-44687-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022] Open
Abstract
Diffusion of methane diluted in supercritical carbon dioxide is studied by experiment and molecular simulation in the temperature range from 292.55 to 332.85 K along the isobars 9.0, 12.5 and 14.7 MPa. Measurements of the Fick diffusion coefficient are carried out with the Taylor dispersion technique. Molecular dynamics simulation and the Green-Kubo formalism are employed to obtain Fick, Maxwell-Stefan and intradiffusion coefficients as well as shear viscosity. The obtained diffusion coefficients are on the order of 10-8 m2/s. The composition, temperature and density dependence of diffusion is analyzed. The Fick diffusion coefficient of methane in carbon dioxide shows an anomaly in the near-critical region. This behavior can be attributed to the crossing of the so-called Widom line, where the supercritical fluid goes through a transition between liquid-like and gas-like states. Further, several classical equations are tested on their ability to predict this behavior and it is found that equations that explicitly include the density are better suited to predict the sharp variation of the diffusion coefficient near the critical region predicted by molecular simulation.
Collapse
Affiliation(s)
- Gabriela Guevara-Carrion
- Thermodynamics and Process Engineering, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| | - Sergiy Ancherbak
- MRC, CP165/62, Université Libre de Bruxelles, Av. F. D. Roosevelt, 50, B-1050, Brussels, Belgium
| | - Aliaksandr Mialdun
- MRC, CP165/62, Université Libre de Bruxelles, Av. F. D. Roosevelt, 50, B-1050, Brussels, Belgium
| | - Jadran Vrabec
- Thermodynamics and Process Engineering, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587, Berlin, Germany.
| | - Valentina Shevtsova
- MRC, CP165/62, Université Libre de Bruxelles, Av. F. D. Roosevelt, 50, B-1050, Brussels, Belgium
| |
Collapse
|
7
|
Kozlova S, Mialdun A, Ryzhkov I, Janzen T, Vrabec J, Shevtsova V. Do ternary liquid mixtures exhibit negative main Fick diffusion coefficients? Phys Chem Chem Phys 2019; 21:2140-2152. [DOI: 10.1039/c8cp06795c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Measured main Fick diffusion coefficients are throughout positive. However, they may appear to be negative after transformation to the molar reference frame, if the excess volume is significant and the experimental uncertainties of the cross diffusion coefficients are large.
Collapse
Affiliation(s)
- S. Kozlova
- Institute of Computational Modelling SB RAS
- Krasnoyarsk
- Russia
| | - A. Mialdun
- Microgravity Research Center
- Université Libre de Bruxelles (ULB)
- 50, B-1050 Brussels
- Belgium
| | - I. Ryzhkov
- Institute of Computational Modelling SB RAS
- Krasnoyarsk
- Russia
- Siberian Federal University
- Krasnoyarsk
| | - T. Janzen
- Thermodynamics and Process Engineering
- Technical University Berlin
- 10587 Berlin
- Germany
| | - J. Vrabec
- Thermodynamics and Process Engineering
- Technical University Berlin
- 10587 Berlin
- Germany
| | - V. Shevtsova
- Microgravity Research Center
- Université Libre de Bruxelles (ULB)
- 50, B-1050 Brussels
- Belgium
| |
Collapse
|
8
|
Janzen T, Vrabec J. Diffusion Coefficients of a Highly Nonideal Ternary Liquid Mixture: Cyclohexane–Toluene–Methanol. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04385] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tatjana Janzen
- Thermodynamics and Process Engineering, Technical University Berlin, 10587 Berlin, Germany
| | - Jadran Vrabec
- Thermodynamics and Process Engineering, Technical University Berlin, 10587 Berlin, Germany
| |
Collapse
|