1
|
Choi JS, Fortunato GV, Jung DC, Lourenço JC, Lanza MRV, Ledendecker M. Catalyst durability in electrocatalytic H 2O 2 production: key factors and challenges. NANOSCALE HORIZONS 2024; 9:1250-1261. [PMID: 38847073 DOI: 10.1039/d4nh00109e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
On-demand electrocatalytic hydrogen peroxide (H2O2) production is a significant technological advancement that offers a promising alternative to the traditional anthraquinone process. This approach leverages electrocatalysts for the selective reduction of oxygen through a two-electron transfer mechanism (ORR-2e-), holding great promise for delivering a sustainable and economically efficient means of H2O2 production. However, the harsh operating conditions during the electrochemical H2O2 production lead to the degradation of both structural integrity and catalytic efficacy in these materials. Here, we systematically examine the design strategies and materials typically utilized in the electroproduction of H2O2 in acidic environments. We delve into the prevalent reactor conditions and scrutinize the factors contributing to catalyst deactivation. Additionally, we propose standardised benchmarking protocols aimed at evaluating catalyst stability under such rigorous conditions. To this end, we advocate for the adoption of three distinct accelerated stress tests to comprehensively assess catalyst performance and durability.
Collapse
Affiliation(s)
- Ji Sik Choi
- Department of Technical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany.
- Sustainable Energy Materials, Technical University Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany.
| | - Guilherme V Fortunato
- Department of Technical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany.
- Sustainable Energy Materials, Technical University Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany.
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Daniele C Jung
- Department of Technical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany.
| | - Julio C Lourenço
- Sustainable Energy Materials, Technical University Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany.
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Marc Ledendecker
- Sustainable Energy Materials, Technical University Munich, Campus Straubing, Schulgasse 22, 94315 Straubing, Germany.
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Zhang M, Zhang G, Gao H, Du X, Wang C, Wang T, Zhang P, Gong J. Interfacial Engineering of Ag/C Catalysts for Practical Electrochemical CO 2 Reduction to CO. CHEMSUSCHEM 2024:e202400093. [PMID: 38979694 DOI: 10.1002/cssc.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/10/2024]
Abstract
Electrochemical CO2 reduction to value-added chemicals by renewable energy sources is a promising way to implement the artificial carbon cycle. During the reaction, especially at high current densities for practical applications, the complex interaction between the key intermediates and the active sites would affect the selectivity, while the reconfiguration of electrocatalysts could restrict the stability. This paper describes the fabrication of Ag/C catalysts with a well-engineered interfacial structure, in which Ag nanoparticles are partially encapsulated by C supports. The obtained electrocatalyst exhibits CO Faradaic efficiencies (FEs) of over 90 % at current densities even as high as 1.1 A/cm2. The strong interfacial interaction between Ag and C leads to highly localized electron density that promotes the rate-determining electron transfer step by enhancing the adsorption and the stabilization of the key *COO- intermediate. In addition, the partially encapsulated structure prevents the reconfiguration of Ag during the reaction. Stable performance for over 600 h at 500 mA/cm2 is achieved with CO FE maintaining over 95 %, which is among the best stability with such a high selectivity and current density. This work provides a novel catalyst design showing the potential for the practical application of electrochemical reduction of CO2.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Key Laboratory for Green Chemical Technology of, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Gong Zhang
- Key Laboratory for Green Chemical Technology of, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Hui Gao
- Key Laboratory for Green Chemical Technology of, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Xiaowei Du
- Key Laboratory for Green Chemical Technology of, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Chujun Wang
- Key Laboratory for Green Chemical Technology of, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Tuo Wang
- Key Laboratory for Green Chemical Technology of, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
| | - Peng Zhang
- Key Laboratory for Green Chemical Technology of, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
| |
Collapse
|
3
|
Zhang KX, Liu ZP. Electrochemical hydrogen evolution on Pt-based catalysts from a theoretical perspective. J Chem Phys 2023; 158:141002. [PMID: 37061480 DOI: 10.1063/5.0142540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Hydrogen evolution reaction (HER) by splitting water is a key technology toward a clean energy society, where Pt-based catalysts were long known to have the highest activity under acidic electrochemical conditions but suffer from high cost and poor stability. Here, we overview the current status of Pt-catalyzed HER from a theoretical perspective, focusing on the methodology development of electrochemistry simulation, catalytic mechanism, and catalyst stability. Recent developments in theoretical methods for studying electrochemistry are introduced, elaborating on how they describe solid-liquid interface reactions under electrochemical potentials. The HER mechanism, the reaction kinetics, and the reaction sites on Pt are then summarized, which provides an atomic-level picture of Pt catalyst surface dynamics under reaction conditions. Finally, state-of-the-art experimental solutions to improve catalyst stability are also introduced, which illustrates the significance of fundamental understandings in the new catalyst design.
Collapse
Affiliation(s)
- Ke-Xiang Zhang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Sakakibara N, Shizuno M, Kanazawa T, Kato K, Yamakata A, Nozawa S, Ito T, Terashima K, Maeda K, Tamaki Y, Ishitani O. Surface-Specific Modification of Graphitic Carbon Nitride by Plasma for Enhanced Durability and Selectivity of Photocatalytic CO 2 Reduction with a Supramolecular Photocatalyst. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13205-13218. [PMID: 36857173 PMCID: PMC10020964 DOI: 10.1021/acsami.3c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Photocatalytic CO2 reduction is in high demand for sustainable energy management. Hybrid photocatalysts combining semiconductors with supramolecular photocatalysts represent a powerful strategy for constructing visible-light-driven CO2 reduction systems with strong oxidation power. Here, we demonstrate the novel effects of plasma surface modification of graphitic carbon nitride (C3N4), which is an organic semiconductor, to achieve better affinity and electron transfer at the interface of a hybrid photocatalyst consisting of C3N4 and a Ru(II)-Ru(II) binuclear complex (RuRu'). This plasma treatment enabled the "surface-specific" introduction of oxygen functional groups via the formation of a carbon layer, which worked as active sites for adsorbing metal-complex molecules with methyl phosphonic-acid anchoring groups onto the plasma-modified surface of C3N4. Upon photocatalytic CO2 reduction with the hybrid under visible-light irradiation, the plasma-surface-modified C3N4 with RuRu' enhanced the durability of HCOOH production by three times compared to that achieved when using a nonmodified system. The high selectivity of HCOOH production against byproduct evolution (H2 and CO) was improved, and the turnover number of HCOOH production based on the RuRu' used reached 50 000, which is the highest among the metal-complex/semiconductor hybrid systems reported thus far. The improved activity is mainly attributed to the promotion of electron transfer from C3N4 to RuRu' under light irradiation via the accumulation of electrons trapped in deep defect sites on the plasma-modified surface of C3N4.
Collapse
Affiliation(s)
- Noritaka Sakakibara
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1-NE-2 Ookayama, Meguro, Tokyo 152-8550, Japan
- Japan
Society for the Promotion of Science, Kojimachi
Business Center Building, 5-3-1 Kojimachi, Chiyoda, Tokyo 102-0083, Japan
| | - Mitsuhiko Shizuno
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1-NE-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Tomoki Kanazawa
- Japan
Society for the Promotion of Science, Kojimachi
Business Center Building, 5-3-1 Kojimachi, Chiyoda, Tokyo 102-0083, Japan
- Institute
of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| | - Kosaku Kato
- Faculty
of Natural Science and Technology, Okayama
University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Akira Yamakata
- Faculty
of Natural Science and Technology, Okayama
University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Shunsuke Nozawa
- Institute
of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| | - Tsuyohito Ito
- Department
of Advanced Materials Science, Graduate
School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Kazuo Terashima
- Department
of Advanced Materials Science, Graduate
School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Kazuhiko Maeda
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1-NE-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Yusuke Tamaki
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1-NE-2 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Osamu Ishitani
- Department
of Chemistry, School of Science, Tokyo Institute
of Technology, 2-12-1-NE-2 Ookayama, Meguro, Tokyo 152-8550, Japan
- Department
of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
5
|
Exploring the Potential Energy Surface of Pt 6 Sub-Nano Clusters Deposited over Graphene. Int J Mol Sci 2023; 24:ijms24010870. [PMID: 36614312 PMCID: PMC9820941 DOI: 10.3390/ijms24010870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Catalytic systems based on sub-nanoclusters deposited over different supports are promising for very relevant chemical transformations such as many electrocatalytic processes as the ORR. These systems have been demonstrated to be very fluxional, as they are able to change shape and interconvert between each other either alone or in the presence of adsorbates. In addition, an accurate representation of their catalytic activity requires the consideration of ensemble effects and not a single structure alone. In this sense, a reliable theoretical methodology should assure an accurate and extensive exploration of the potential energy surface to include all the relevant structures and with correct relative energies. In this context, we applied DFT in conjunction with global optimization techniques to obtain and analyze the characteristics of the many local minima of Pt6 sub-nanoclusters over a carbon-based support (graphene)-a system with electrocatalytic relevance. We also analyzed the magnetism and the charge transfer between the clusters and the support and paid special attention to the dependence of dispersion effects on the ensemble characteristics. We found that the ensembles computed with and without dispersion corrections are qualitatively similar, especially for the lowest-in-energy clusters, which we attribute to a (mainly) covalent binding to the surface. However, there are some significant variations in the relative stability of some clusters, which would significantly affect their population in the ensemble composition.
Collapse
|
6
|
Munarriz J, Zhang Z, Sautet P, Alexandrova AN. Graphite-Supported Pt n Cluster Electrocatalysts: Major Change of Active Sites as a Function of the Applied Potential. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Julen Munarriz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería no. 8, Campus Universitario de El Cristo, Oviedo, 33006 Spain
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Philippe Sautet
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
- California NanoSystem Institute, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, Los Angeles, California 90095, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
- California NanoSystem Institute, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| |
Collapse
|
7
|
Auer AA. An introduction to electrochemical energy conversion. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202024600018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper is meant to provide a basic introduction to electrochemical energy conversion. It should be a low-barrier entry point for reading the relevant literature and understanding the basic phenomena, approaches and techniques. Starting with some basics of electrochemistry to establish the most important techniques, I will touch upon established electrochemical processes which are carried out today on industrial scale to finish with an outline of state-of-the art research on proton exchange membrane fuel cells and electrolysers for water splitting.
Collapse
|
8
|
Gerber IC, Serp P. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chem Rev 2019; 120:1250-1349. [DOI: 10.1021/acs.chemrev.9b00209] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iann C. Gerber
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, F-31077 Toulouse, France
| | - Philippe Serp
- LCC-CNRS, Université de Toulouse, UPR 8241 CNRS, INPT, 31400 Toulouse, France
| |
Collapse
|
9
|
Lian T, Koper MTM, Reuter K, Subotnik JE. Special Topic on Interfacial Electrochemistry and Photo(electro)catalysis. J Chem Phys 2019; 150:041401. [PMID: 30709260 DOI: 10.1063/1.5088351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interfacial electrochemistry and photo(electro)catalysis are key processes that convert the energy of photons or electrons to chemical bonds in many energy conversion and storage technologies. Achieving a molecular level understanding of the fundamental interfacial structure, energetics, dynamics, and reaction mechanisms that govern these processes represents a broad frontier for chemical physics and physical chemistry. This Special Topic contains a collection of articles that range from the development of new experimental and computational techniques to the novel application of those techniques for mechanistic studies, as the principal investigators seek a fundamental molecular understanding of both electrode/electrolyte interfaces and the relevant electrocatalytic, photocatalytic, and photoelectrochemical reactions taking place thereabout. Altogether, this collection of articles captures the current state of this very active, frontier research field and highlights the current and remaining key scientific challenges and opportunities.
Collapse
Affiliation(s)
- Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|