1
|
Long Z, Meng J, Weddle LR, Videla PE, Menzel JP, Cabral DGA, Liu J, Qiu T, Palasz JM, Bhattacharyya D, Kubiak CP, Batista VS, Lian T. The Impact of Electric Fields on Processes at Electrode Interfaces. Chem Rev 2025; 125:1604-1628. [PMID: 39818737 PMCID: PMC11826898 DOI: 10.1021/acs.chemrev.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025]
Abstract
The application of external electric fields to influence chemical reactions at electrode interfaces has attracted considerable interest in recent years. However, the design of electric fields to achieve highly efficient and selective catalytic systems, akin to the optimized fields found at enzyme active sites, remains a significant challenge. Consequently, there has been substantial effort in probing and understanding the interfacial electric fields at electrode/electrolyte interfaces and their effect on adsorbates. In this review, we examine recent advances in experimental, computational, and theoretical studies of the interfacial electric field, the origin of the vibrational Stark effect of adsorbates on electrode surfaces, and the effects of electric fields on reactions at electrode/electrolyte interfaces. We also discuss recent advances in control of charge transfer and chemical reactions using magnetic fields. Finally, we outline perspectives on key areas for future studies.
Collapse
Affiliation(s)
- Zhuoran Long
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jinhui Meng
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Lydia R. Weddle
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Pablo E. Videla
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jan Paul Menzel
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Delmar G. A. Cabral
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Jinchan Liu
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Tianyin Qiu
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Joseph M. Palasz
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | | | - Clifford P. Kubiak
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, United States
| | - Victor S. Batista
- Department
of Chemistry and Energy Sciences Institute, Yale University, New Haven, Connecticut 06520, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Betts K, Jiang Y, Frailey M, Yohannes K, Feng Z. Potential-Dependent ATR-SEIRAS and EQCM-D Analysis of Interphase Formation in Zinc Battery Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63026-63038. [PMID: 39492667 DOI: 10.1021/acsami.4c15318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
With the heightening interest in bivalent battery technology, there arises a necessity for a thorough investigation into zinc-ion battery (ZIB) electrolytes, accommodating their chemical attributes and potential-dependent structural dynamics. While the phenomenon of in situ solid electrolyte interphase formation is extensively documented in lithium-ion batteries, its analogous occurrences in ZIBs remain limited. Herein is a comparative study of three zinc electrolytes of interest: ZnSO4, ZnOTF, and Zn(TFSI)2/LiTFSI hybrid water-in-salt electrolyte. Additionally, the impact of an acetonitrile additive is scrutinized, with a comparative assessment of the interfacial behavior in aqueous solutions. Utilizing ATR-SEIRAS, potential-dependent alterations in the composition of the electrolyte/electrode interface were monitored, while EQCM-D facilitated a comprehensive understanding of variations in the mass and structural properties of the adsorbed layer. Aqueous ZnSO4 demonstrated the accumulation of porous Zn4SO4(OH)6·xH2O at negative potentials, leading to a mass of 1.47 μg cm-2 after five cycles. Bisulfate formation was observed at positive potentials. SEIRAS measurements for ZnOTF demonstrated reorientation and surface adsorption of CF3SO3- to favor CF3 at the surface for positive potentials, and acetonitrile showed increased stability for the electrode at negative potentials. The additive was also reported to lead to the accumulation of a substantial passivation layer with viscoelastic properties. The zinc water-in-salt showed exceptional surface stability at negative potentials and a widened potential window. A thin rigid zinc SEI layer is reported with a mass of 0.7 μg cm-2. The compositional intricacies of these surface structures are discussed in relation to their solvent conditions. This investigation not only sheds light on the initial charge/discharge cycles in ZIBs but also underscores their pivotal role in instigating enduring transformations that can significantly influence their long-term cycling performance.
Collapse
Affiliation(s)
- Katherine Betts
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Yuhan Jiang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Michael Frailey
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Kidus Yohannes
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Zhange Feng
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, United States
| |
Collapse
|
3
|
Lins E, Andvaag IR, Read S, Rosendahl SM, Burgess IJ. Dual-Frequency Comb Spectroscopy Studies of Ionic Strength Effects in Time-Resolved ATR-SEIRAS. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Rebstock JA, Zhu Q, Baker LR. Comparing interfacial cation hydration at catalytic active sites and spectator sites on gold electrodes: understanding structure sensitive CO 2 reduction kinetics. Chem Sci 2022; 13:7634-7643. [PMID: 35872825 PMCID: PMC9242014 DOI: 10.1039/d2sc01878k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Hydrated cations present in the electrochemical double layer (EDL) are known to play a crucial role in electrocatalytic CO2 reduction (CO2R), and numerous studies have attempted to explain how the cation effect contributes to the complex CO2R mechanism. CO2R is a structure sensitive reaction, indicating that a small fraction of total surface sites may account for the majority of catalytic turnover. Despite intense interest in specific cation effects, probing site-specific, cation-dependent solvation structures remains a significant challenge. In this work, CO adsorbed on Au is used as a vibrational Stark reporter to indirectly probe solvation structure using vibrational sum frequency generation (VSFG) spectroscopy. Two modes corresponding to atop adsorption of CO are observed with unique frequency shifts and potential-dependent intensity profiles, corresponding to direct adsorption of CO to inactive surface sites, and in situ generated CO produced at catalytic active sites. Analysis of the cation-dependent Stark tuning slopes for each of these species provides estimates of the hydrated cation radius upon adsorption to active and inactive sites on the Au electrode. While cations are found to retain their bulk hydration shell upon adsorption at inactive sites, catalytic active sites are characterized by a single layer of water between the Au surface and the electrolyte cation. We propose that the drastic increase in catalytic performance at active sites stems from this unique solvation structure at the Au/electrolyte interface. Building on this evidence of a site-specific EDL structure will be critical to understand the connection between cation-dependent interfacial solvation and CO2R performance.
Collapse
Affiliation(s)
- Jaclyn A Rebstock
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Quansong Zhu
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| |
Collapse
|
5
|
Schönig M, Frittmann S, Schuster R. Identification of electrochemically adsorbed species via electrochemical microcalorimetry: sulfate adsorption on Au(111). Chemphyschem 2022; 23:e202200227. [PMID: 35510390 PMCID: PMC9542382 DOI: 10.1002/cphc.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/28/2022] [Indexed: 11/11/2022]
Abstract
We investigate compositional changes of an electrochemical interface upon polarization with electrochemical microcalorimetry. From the heat exchanged at a Au(111) electrode upon sulfate adsorption, we determine the reaction entropy of the adsorption process for both neutral and acidic solutions, where the dominant species in solution changes from SO42− to HSO4−. In neutral solution, the reaction entropy is about 40 J mol−1 K−1 more positive than that in acidic solution over the complete sulfate adsorption region. This entropy offset is explicable by a deprotonation step of HSO4− preceding sulfate adsorption in acidic solution, which shows that the adsorbing species is SO4* in both solutions. The observed overall variation of the reaction entropy in the sulfate adsorption region of ca. 80 J mol−1 K−1 indicates significant sulfate‐coverage dependent entropic contributions to the Free Enthalpy of the surface system.
Collapse
Affiliation(s)
- Marco Schönig
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie, Institute of Physical Chemistry, GERMANY
| | - Stefan Frittmann
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie, Institute of Physical Chemistry, GERMANY
| | - Rolf Schuster
- Karlsruher Institut für Technologie KIT, Institut für Physikalische Chemie, Kaiserstr. 12, 76131, Karlsruhe, GERMANY
| |
Collapse
|
6
|
RAFAIDEEN T, BARANTON S, Coutanceau C. Electroreforming of glucose/xylose mixtures on PdAu based nanocatalysts. ChemElectroChem 2022. [DOI: 10.1002/celc.202101575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thibault RAFAIDEEN
- Université de Poitiers: Universite de Poitiers IC2MP 4 rue Michel BrunetTSA51106 86073 Poitiers FRANCE
| | - Stève BARANTON
- Université de Poitiers: Universite de Poitiers IC2MP 4 rue Michel BrunetTSA51106 86073 Poitiers FRANCE
| | - Christophe Coutanceau
- Université de Poitiers: Universite de Poitiers IC2MP 4 rue Michel BrunetB27, TSA 51106cedex 9 86073 Poitiers FRANCE
| |
Collapse
|
7
|
Pfisterer JHK, Nattino F, Zhumaev UE, Breiner M, Feliu JM, Marzari N, Domke KF. Role of OH Intermediates during the Au Oxide Electro-Reduction at Low pH Elucidated by Electrochemical Surface-Enhanced Raman Spectroscopy and Implicit Solvent Density Functional Theory. ACS Catal 2020; 10:12716-12726. [PMID: 33194302 PMCID: PMC7654126 DOI: 10.1021/acscatal.0c02752] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/26/2020] [Indexed: 11/29/2022]
Abstract
![]()
Molecular understanding of the electrochemical
oxidation of metals
and the electro-reduction of metal oxides is of pivotal importance
for the rational design of catalyst-based devices where metal(oxide)
electrodes play a crucial role. Operando monitoring
and reliable identification of reacting species, however, are challenging
tasks because they require surface-molecular sensitive and specific
experiments under reaction conditions and sophisticated theoretical
calculations. The lack of molecular insight under operating conditions
is largely due to the limited availability of operando tools and to date still hinders a quick technological advancement
of electrocatalytic devices. Here, we present a combination of advanced
density functional theory (DFT) calculations considering implicit
solvent contributions and time-resolved electrochemical surface-enhanced
Raman spectroscopy (EC-SERS) to identify short-lived reaction intermediates
during the showcase electro-reduction of Au oxide (AuOx) in sulfuric
acid over several tens of seconds. The EC-SER spectra provide evidence
for temporary Au-OH formation and for the asynchronous adsorption
of (bi)sulfate ions at the surface during the reduction process. Spectral
intensity fluctuations indicate an OH/(bi)sulfate turnover period
of 4 s. As such, the presented EC-SERS potential jump approach combined
with implicit solvent DFT simulations allows us to propose a reaction
mechanism and prove that short-lived Au-OH intermediates also play
an active role during the AuOx electro-reduction in acidic media,
implying their potential relevance also for other electrocatalytic
systems operating at low pH, like metal corrosion, the oxidation of
CO, HCOOH, and other small organic molecules, and the oxygen evolution
reaction.
Collapse
Affiliation(s)
- Jonas H. K. Pfisterer
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Francesco Nattino
- Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ulmas E. Zhumaev
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Manuel Breiner
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Juan M. Feliu
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Nicola Marzari
- Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Katrin F. Domke
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
8
|
Jusys Z, Behm RJ. The Effect of Anions and pH on the Activity and Selectivity of an Annealed Polycrystalline Au Film Electrode in the Oxygen Reduction Reaction-Revisited. Chemphyschem 2019; 20:3276-3288. [PMID: 31705610 PMCID: PMC6973112 DOI: 10.1002/cphc.201900960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/31/2019] [Indexed: 01/06/2023]
Abstract
Aiming at a better understanding of correlations between the activity and selectivity of Au electrodes in the oxygen reduction reaction (ORR) under controlled transport conditions, we have investigated this reaction by combined electrochemical and in situ FTIR measurements, performed in a flow cell set‐up in an attenuated total reflection (ATR) configuration in acid and alkaline electrolytes. The formation of incomplete reduction products (hydrogen peroxyde/peroxyls) was detected by a collector electrode, the onset of OHad formation was probed by bulk CO oxidation. Using an electroless‐deposited, annealed Au film on a Si prism as working electrode and three different electrolytes for comparison (sulfuric acid, perchloric acid, sodium hydroxide solution), we could derive detailed information on the anion adsorption behavior, and could correlate this with the ORR characteristics. The data reveal pronounced effects of the anions and the pH on the ORR characteristics, indicated e. g., by a grossly different activity and selectivity for the 4‐electron pathway to water/hydroxyls, with the onset ranging from ca. 1.0 V in alkaline electrolyte to 0.6 V in sulfuric acid electrolyte, and the selectivity for the 4‐electron pathway ranging from 100 % (alkaline electrolyte, low overpotentials) to 40 % (acidic electrolytes, alkaline electrolyte at high overpotentials). In contrast, the effect of the ORR on the anion adsorption characteristics is small. Anion effects as well as correlations between anion adsorption and ORR are discussed.
Collapse
Affiliation(s)
- Zenonas Jusys
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - R Jürgen Behm
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| |
Collapse
|
9
|
Jung C, Lee C. Adsorption of Tetrachloroplatinate Complex on Gold Surfaces in Perchloric and Sulfuric Acids. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chan‐Yong Jung
- Department of Advanced Materials ChemistryCollege of Science and Technology, Korea University Sejong‐si 30019 South Korea
| | - Chi‐Woo Lee
- Department of Advanced Materials ChemistryCollege of Science and Technology, Korea University Sejong‐si 30019 South Korea
| |
Collapse
|
10
|
Neri G, Donaldson PM, Cowan AJ. In situ study of the low overpotential "dimer pathway" for electrocatalytic carbon dioxide reduction by manganese carbonyl complexes. Phys Chem Chem Phys 2019; 21:7389-7397. [PMID: 30906938 DOI: 10.1039/c9cp00504h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The electrocatalytic reduction of CO2 using [fac-Mn(bpy)(CO)3Br] (bpy = 2,2'-bipyridine) and its derivatives has been the subject of numerous recent studies. However the mechanisms of catalysis are still debated. Here we carry out in situ vibrational sum-frequency generation (VSFG) spectroelectrochemistry to examine how this catalyst behaves at an electrode surface. In particular, a low overpotential pathway involving a dimeric manganese has been reported in several studies using substituted bipyridine ligands. Here, we find that the "dimer pathway" can also occur with the unsubstuituted bipyridine complexes. Specifically we can observe spectroscopic evidence of the interaction between [Mn2(bpy)2(CO)6] with CO2 in the presence of a suitable acid. Detailed VSFG studies of [Mn2(bpy)2(CO)6], including of the potential dependence of the surface ν(CO) mode, allow us to construct a model of how it accumulates and behaves at the electrode surface under potentiostatic control.
Collapse
Affiliation(s)
- Gaia Neri
- Department of Chemistry and Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZD, Liverpool, UK.
| | | | | |
Collapse
|
11
|
Lian T, Koper MTM, Reuter K, Subotnik JE. Special Topic on Interfacial Electrochemistry and Photo(electro)catalysis. J Chem Phys 2019; 150:041401. [PMID: 30709260 DOI: 10.1063/1.5088351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interfacial electrochemistry and photo(electro)catalysis are key processes that convert the energy of photons or electrons to chemical bonds in many energy conversion and storage technologies. Achieving a molecular level understanding of the fundamental interfacial structure, energetics, dynamics, and reaction mechanisms that govern these processes represents a broad frontier for chemical physics and physical chemistry. This Special Topic contains a collection of articles that range from the development of new experimental and computational techniques to the novel application of those techniques for mechanistic studies, as the principal investigators seek a fundamental molecular understanding of both electrode/electrolyte interfaces and the relevant electrocatalytic, photocatalytic, and photoelectrochemical reactions taking place thereabout. Altogether, this collection of articles captures the current state of this very active, frontier research field and highlights the current and remaining key scientific challenges and opportunities.
Collapse
Affiliation(s)
- Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
12
|
Gardner AM, Saeed KH, Cowan AJ. Vibrational sum-frequency generation spectroscopy of electrode surfaces: studying the mechanisms of sustainable fuel generation and utilisation. Phys Chem Chem Phys 2019; 21:12067-12086. [DOI: 10.1039/c9cp02225b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The electrocatalytic oxidation of water coupled to the reduction of carbon dioxide, to make carbon based products, or the reduction of protons to provide hydrogen, offers a sustainable route to generating useful fuels.
Collapse
Affiliation(s)
- Adrian M. Gardner
- Stephenson Institute for Renewable Energy and the Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| | - Khezar H. Saeed
- Stephenson Institute for Renewable Energy and the Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| | - Alexander J. Cowan
- Stephenson Institute for Renewable Energy and the Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| |
Collapse
|