1
|
Leng JG, Sharples TR, Fournier M, McKendrick KG, Craciunescu L, Paterson MJ, Costen ML. Inelastic scattering of NO(A 2Σ +) + CO 2: rotation-rotation pair-correlated differential cross sections. Faraday Discuss 2024; 251:279-295. [PMID: 38757419 DOI: 10.1039/d3fd00162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A crossed beam velocity-map ion-imaging apparatus has been used to determine differential cross sections (DCSs) for the rotationally inelastic scattering of NO(A2Σ+, v = 0, j = 0.5) with CO2, as a function of both NO(A, v = 0, N') final state and the coincident final rotational energy of the CO2. The DCSs are dominated by forward-peaked scattering for all N', with significant rotational excitation of CO2, and a small backward scattered peak is also observed for all final N'. However, no rotational rainbow scattering is observed and there is no evidence for significant product rotational angular momentum polarization. New ab initio potential energy surface calculations at the PNO-CCSD(T)-F12b level of theory report strong attractive forces at long ranges with significant anisotropy relative to both NO and CO2. The absence of rotational rainbow scattering is consistent with removal of low-impact-parameter collisions via electronic quenching, in agreement with the literature quenching rates of NO(A) by CO2 and recent electronic structure calculations. We propose that high-impact-parameter collisions, that do not lead to quenching, experience strong anisotropic attractive forces that lead to significant rotational excitation in both NO and CO2, depolarizing product angular momentum while leading to forward and backward glory scattering.
Collapse
Affiliation(s)
- Joseph G Leng
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Thomas R Sharples
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Martin Fournier
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Kenneth G McKendrick
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Luca Craciunescu
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Martin J Paterson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Matthew L Costen
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
2
|
Kallos IS, Bar I, Baraban JH. Significantly Improved Detection of Molecular Oxygen by Two-Color Resonance-Enhanced Multiphoton Ionization. J Phys Chem Lett 2024; 15:2639-2642. [PMID: 38421311 DOI: 10.1021/acs.jpclett.4c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
We report a new spectroscopic detection scheme for molecular oxygen that achieves roughly two orders of magnitude higher sensitivity for fully rotationally resolved spectra than the current state of the art. Two-color (2 + 1') resonance-enhanced multiphoton ionization (REMPI) via the 3d Rydberg complex yields state-selective spectra with signal comparable to the intense but diffuse C 3sσ 3Πg ← X 3Σg- (2 + 1) REMPI bands without significant saturation or broadening. The resulting increase in sensitivity permitted observation of the very weak 3dπ 1Δ2 ← X 3Σg- transitions and is independent of the intermediate state. This advance in ionization efficiency and quantum state-selective sensitivity for O2 promises to aid physical and chemical studies across a wide variety of fields.
Collapse
Affiliation(s)
- Itai S Kallos
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ilana Bar
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Joshua H Baraban
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
3
|
Sun ZF, Scheidsbach RJA, van Hemert MC, van der Avoird A, Suits AG, Parker DH. Imaging rotational energy transfer: comparative stereodynamics in CO + N 2 and CO + CO inelastic scattering. Phys Chem Chem Phys 2023. [PMID: 37377093 DOI: 10.1039/d3cp02229c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
State-to-state rotational energy transfer in collisions of ground ro-vibrational state 13CO molecules with N2 molecules has been studied using the crossed molecular beam method under kinematically equivalent conditions used for 13CO + CO rotationally inelastic scattering described in a previously published report (Sun et al., Science, 2020, 369, 307-309). The collisionally excited 13CO molecule products are detected by the same (1 + 1' + 1'') VUV (Vacuum Ultra-Violet) resonance enhanced multiphoton ionization scheme coupled with velocity map ion imaging. We present differential cross sections and scattering angle resolved rotational angular momentum alignment moments extracted from experimentally measured 13CO + N2 scattering images and compare them with theoretical predictions from quasi-classical trajectories (QCT) on a newly calculated 13CO-N2 potential energy surface (PES). Good agreement between experiment and theory is found, which confirms the accuracy of the 13CO-N2 potential energy surface for the 1460 cm-1 collision energy studied by experiment. Experimental results for 13CO + N2 are compared with those for 13CO + CO collisions. The angle-resolved product rotational angular momentum alignment moments for the two scattering systems are very similar, which indicates that the collision induced alignment dynamics observed for both systems are dominated by a hard-shell nature. However, compared to the 13CO + CO measurements, the primary rainbow maximum in the DCSs for 13CO + N2 is peaked consistently at more backward scattering angles and the secondary maximum becomes much less obvious, implying that the 13CO-N2 PES is less anisotropic. In addition, a forward scattering component with high rotational excitation seen for 13CO + CO does not appear for 13CO-N2 in the experiment and is not predicted by QCT theory. Some of these differences in collision dynamics behaviour can be predicted by a comparison between the properties of the PESs for the two systems. More specific behaviour is also predicted from analysis of the dependence on the relative collision geometry of 13CO + N2 trajectories compared to 13CO + CO trajectories, which shows the special 'do-si-do' pathway invoked for 13CO + CO is not effective for 13CO + N2 collisions.
Collapse
Affiliation(s)
- Zhong-Fa Sun
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Roy J A Scheidsbach
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Marc C van Hemert
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Ad van der Avoird
- Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - David H Parker
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Department of Physics, Anhui Normal University, Wuhu, Anhui 241000, China.
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Gancewski M, Jóźwiak H, Quintas-Sánchez E, Dawes R, Thibault F, Wcisło P. Fully quantum calculations of O 2-N 2 scattering using a new potential energy surface: Collisional perturbations of the oxygen 118 GHz fine structure line. J Chem Phys 2021; 155:124307. [PMID: 34598560 DOI: 10.1063/5.0063006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A proper description of the collisional perturbation of the shapes of molecular resonances is important for remote spectroscopic studies of the terrestrial atmosphere. Of particular relevance are the collisions between the O2 and N2 molecules-the two most abundant atmospheric species. In this work, we report a new highly accurate O2(X3Σg -)-N2(X1Σg +) potential energy surface and use it for performing the first quantum scattering calculations addressing line shapes for this system. We use it to model the shape of the 118 GHz fine structure line in O2 perturbed by collisions with N2 molecules, a benchmark system for testing our methodology in the case of an active molecule in a spin triplet state. The calculated collisional broadening of the line agrees well with the available experimental data over a wide temperature range relevant for the terrestrial atmosphere. This work constitutes a step toward populating the spectroscopic databases with ab initio line shape parameters for atmospherically relevant systems.
Collapse
Affiliation(s)
- Maciej Gancewski
- Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Hubert Jóźwiak
- Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409-0010, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409-0010, USA
| | - Franck Thibault
- Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Rennes F-35000, France
| | - Piotr Wcisło
- Institute of Physics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| |
Collapse
|
5
|
Gámez F, Fernández JM, Moreno E, Tejeda G, Hernández MI, Montero S. Inelastic Collisions of O 2 with He at Low Temperatures. J Phys Chem A 2019; 123:8496-8505. [DOI: 10.1021/acs.jpca.9b06165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- F. Gámez
- Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - J. M. Fernández
- Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
| | - E. Moreno
- Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
| | - G. Tejeda
- Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
| | - M. I. Hernández
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006 Madrid, Spain
| | - S. Montero
- Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
| |
Collapse
|