1
|
Sekaran S, Bindech O, Fromager E. A unified density matrix functional construction of quantum baths in density matrix embedding theory beyond the mean-field approximation. J Chem Phys 2023; 159:034107. [PMID: 37466226 DOI: 10.1063/5.0157746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
The equivalence in one-electron quantum baths between the practical implementation of density matrix embedding theory (DMET) and the more recent Householder-transformed density matrix functional embedding theory has been shown previously in the standard but special case where the reference full-size (one-electron reduced) density matrix, from which the bath is constructed, is idempotent [S. Yalouz et al., J. Chem. Phys. 157, 214112 (2022)]. We prove mathematically that the equivalence remains valid when the density matrix is not idempotent anymore, thus allowing for the construction of correlated (one-electron) quantum baths. A density-matrix functional exactification of DMET is derived within the present unified quantum embedding formalism. Numerical examples reveal that the embedding cluster can be quite sensitive to the level of density-matrix functional approximation used for computing the reference density matrix.
Collapse
Affiliation(s)
- Sajanthan Sekaran
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Oussama Bindech
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
2
|
Faulstich FM, Kim R, Cui ZH, Wen Z, Kin-Lic Chan G, Lin L. Pure State v-Representability of Density Matrix Embedding Theory. J Chem Theory Comput 2022; 18:851-864. [PMID: 35084855 DOI: 10.1021/acs.jctc.1c01061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density matrix embedding theory (DMET) formally requires the matching of density matrix blocks obtained from high-level and low-level theories, but this is sometimes not achievable in practical calculations. In such a case, the global band gap of the low-level theory vanishes, and this can require additional numerical considerations. We find that both the violation of the exact matching condition and the vanishing low-level gap are related to the assumption that the high-level density matrix blocks are noninteracting pure-state v-representable (NI-PS-V), which assumes that the low-level density matrix is constructed following the Aufbau principle. To relax the NI-PS-V condition, we develop an augmented Lagrangian method to match the density matrix blocks without referring to the Aufbau principle. Numerical results for the 2D Hubbard and hydrogen model systems indicate that, in some challenging scenarios, the relaxation of the Aufbau principle directly leads to exact matching of the density matrix blocks, which also yields improved accuracy.
Collapse
Affiliation(s)
- Fabian M Faulstich
- Department of Mathematics, University of California, Berkeley, California 94720, United States
| | - Raehyun Kim
- Department of Mathematics, University of California, Berkeley, California 94720, United States
| | - Zhi-Hao Cui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zaiwen Wen
- Beijing International Center for Mathematical Research, BICMR, Peking University, Beijing 100871, China
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lin Lin
- Department of Mathematics, University of California, Berkeley, California 94720, United States.,Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Ye HZ, Tran HK, Van Voorhis T. Accurate Electronic Excitation Energies in Full-Valence Active Space via Bootstrap Embedding. J Chem Theory Comput 2021; 17:3335-3347. [PMID: 33957050 DOI: 10.1021/acs.jctc.0c01221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fragment embedding has been widely used to circumvent the high computational scaling of using accurate electron correlation methods to describe the electronic ground states of molecules and materials. However, similar applications that utilize fragment embedding to treat electronic excited states are comparably less reported in the literature. The challenge here is twofold. First, most fragment embedding methods are most effective when the property of interest is local, but the change of the wave function upon excitation is nonlocal in general. Second, even for local excitations, an accurate estimate of, for example, the excitation energy can still be challenging owing to the need for a balanced treatment of both the ground and the excited states. In this work, we show that bootstrap embedding (BE), a fragment embedding method developed recently by our group, is promising toward describing general electronic excitations. Numerical simulations show that the excitation energies in full-valence active space (FVAS) can be well-estimated by BE to an error of ∼0.05 eV using relatively small fragments, for both local excitations and the excitations of some large dye molecules that exhibit strong charge-transfer characters. We hence anticipate BE to be a promising solution to accurately describing the excited states of large chemical systems.
Collapse
Affiliation(s)
- Hong-Zhou Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Henry K Tran
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Head-Marsden K, Flick J, Ciccarino CJ, Narang P. Quantum Information and Algorithms for Correlated Quantum Matter. Chem Rev 2020; 121:3061-3120. [PMID: 33326218 DOI: 10.1021/acs.chemrev.0c00620] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Discoveries in quantum materials, which are characterized by the strongly quantum-mechanical nature of electrons and atoms, have revealed exotic properties that arise from correlations. It is the promise of quantum materials for quantum information science superimposed with the potential of new computational quantum algorithms to discover new quantum materials that inspires this Review. We anticipate that quantum materials to be discovered and developed in the next years will transform the areas of quantum information processing including communication, storage, and computing. Simultaneously, efforts toward developing new quantum algorithmic approaches for quantum simulation and advanced calculation methods for many-body quantum systems enable major advances toward functional quantum materials and their deployment. The advent of quantum computing brings new possibilities for eliminating the exponential complexity that has stymied simulation of correlated quantum systems on high-performance classical computers. Here, we review new algorithms and computational approaches to predict and understand the behavior of correlated quantum matter. The strongly interdisciplinary nature of the topics covered necessitates a common language to integrate ideas from these fields. We aim to provide this common language while weaving together fields across electronic structure theory, quantum electrodynamics, algorithm design, and open quantum systems. Our Review is timely in presenting the state-of-the-art in the field toward algorithms with nonexponential complexity for correlated quantum matter with applications in grand-challenge problems. Looking to the future, at the intersection of quantum information science and algorithms for correlated quantum matter, we envision seminal advances in predicting many-body quantum states and describing excitonic quantum matter and large-scale entangled states, a better understanding of high-temperature superconductivity, and quantifying open quantum system dynamics.
Collapse
Affiliation(s)
- Kade Head-Marsden
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Christopher J Ciccarino
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
5
|
Tran HK, Ye HZ, Van Voorhis T. Bootstrap embedding with an unrestricted mean-field bath. J Chem Phys 2020; 153:214101. [PMID: 33291897 DOI: 10.1063/5.0029092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A suite of quantum embedding methods have recently been developed where the Schmidt decomposition is applied to the full system wavefunction to derive basis states that preserve the entanglement between the fragment and the bath. The quality of these methods can depend heavily on the quality of the initial full system wavefunction. Most of these methods, including bootstrap embedding (BE) [M. Welborn et al; J. Chem. Phys. 145, 074102 (2016)], start from a spin-restricted mean-field wavefunction [call this restricted BE (RBE)]. Given that spin-unrestricted wavefunctions can capture a significant amount of strong correlation at the mean-field level, we suspect that starting from a spin-unrestricted mean-field wavefunction will improve these embedding methods for strongly correlated systems. In this work, BE is generalized to an unrestricted Hartree-Fock bath [call this unrestricted BE (UBE)], and UBE is applied to model hydrogen ring systems. UBE's improved versatility over RBE is utilized to calculate high spin symmetry states that were previously unattainable with RBE. Ionization potentials, electron affinities, and spin-splittings are computed using UBE with accuracy on par with spin-unrestricted coupled cluster singles and doubles. Even for cases where RBE is viable, UBE converges more reliably. We discuss the limitations or weaknesses of each calculation and how improvements to RBE and density matrix embedding theory these past few years can also improve UBE.
Collapse
Affiliation(s)
- Henry K Tran
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hong-Zhou Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Ye HZ, Tran HK, Van Voorhis T. Bootstrap Embedding For Large Molecular Systems. J Chem Theory Comput 2020; 16:5035-5046. [PMID: 32589842 DOI: 10.1021/acs.jctc.0c00438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent developments in quantum embedding theories have provided attractive approaches to correlated calculations for large systems. In this work, we extend our previous work [J. Chem. Theory Comput. 2019, 15, 4497-4506; J. Phys. Chem. Lett. 2019, 10, 6368-6374] on bootstrap embedding (BE) to enable correlated ab initio calculations at the coupled cluster with singles and doubles (CCSD) level for large molecules. We introduce several new algorithmic developments that significantly reduce the computational cost of BE, while maintaining its accuracy. The resulting implementation scales as O(N3) for the integral transform and O(N) for the CCSD calculation. Numerical results on a series of conjugated molecules suggest that BE with reasonably sized fragments can recover more than 99.5% of the total correlation energy of a full CCSD calculation, while the required computational resources (time and storage) compare favorably to one popular local correlation scheme: domain localized pair natural orbital (DLPNO). The largest BE calculation in this work involves ∼2900 basis functions and can be performed on a single node with 16 CPU cores and 64 GB of memory in a few days. We anticipate that these developments represent an important step toward the application of BE to solve practical problems.
Collapse
Affiliation(s)
- Hong-Zhou Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Henry K Tran
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Abstract
Recent developments in quantum embedding have offered an attractive approach to describing electron correlation in molecules. However, previous methods such as density matrix embedding theory (DMET) require rigid partitioning of the system into fragments, which creates significant ambiguity for molecules. Bootstrap embedding (BE) is more flexible because it allows overlapping fragments, but when done on an orbital-by-orbital basis, BE introduces ambiguity in defining the connectivity of the orbitals. In this Letter, we present an atom-based fragment definition that significantly augments BE's performance in molecules. The resulting method, which we term atom-based BE, is very effective at recovering valence electron correlation in moderate-sized bases and delivers near-chemical-accuracy results using extrapolation. We anticipate atom-based BE may lead to a low-scaling and highly accurate approach to electron correlation in large molecules.
Collapse
Affiliation(s)
- Hong-Zhou Ye
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Troy Van Voorhis
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
8
|
Abstract
![]()
Fragment
embedding is one way to circumvent the high computational
scaling of accurate electron correlation methods. The challenge of
applying fragment embedding to molecular systems primarily lies in
the strong entanglement and correlation that prevent accurate fragmentation
across chemical bonds. Recently, Schmidt decomposition has been shown
effective for embedding fragments that are strongly coupled to a bath
in several model systems. In this work, we extend a recently developed
quantum embedding scheme, bootstrap embedding (BE), to molecular systems.
The resulting method utilizes the matching conditions naturally arising
from using overlapping fragments to optimize the embedding. Numerical
simulation suggests that the accuracy of the embedding improves rapidly
with fragment size for small molecules, whereas larger fragments that
include orbitals from different atoms may be needed for larger molecules.
BE scales linearly with system size (apart from an integral transform)
and hence can potentially be useful for large-scale calculations.
Collapse
Affiliation(s)
- Hong-Zhou Ye
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Nathan D Ricke
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Henry K Tran
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Troy Van Voorhis
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
9
|
Hermes MR, Gagliardi L. Multiconfigurational Self-Consistent Field Theory with Density Matrix Embedding: The Localized Active Space Self-Consistent Field Method. J Chem Theory Comput 2019; 15:972-986. [PMID: 30620876 DOI: 10.1021/acs.jctc.8b01009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Density matrix embedding theory (DMET) is a fully quantum-mechanical embedding method which shows great promise as a method of defeating the inherent exponential cost scaling of multiconfigurational wave function-based calculations by breaking large systems into smaller, coupled subsystems. However, we recently [ Pham et al. J. Chem. Theory Comput. 2018 , 14 , 1960 .] encountered evidence that the approximate single-determinantal bath picture inherent to DMET is sometimes problematic when the complete active space self-consistent field (CASSCF) is used as a solver and the method is applied to realistic models of strongly correlated molecules. Here, we show this problem can be defeated by generalizing DMET to use a multiconfigurational wave function as a bath without sacrificing practically attractive features of DMET, such as a second-quantization form of the embedded subsystem Hamiltonian, by dividing the active space into unentangled active subspaces each localized to one fragment. We introduce the term localized active space (LAS) to refer to this kind of wave function. The LAS bath wave function can be obtained by the DMET algorithm itself in a self-consistent manner, and we refer to this approach, introduced here for the first time, as the localized active space self-consistent field (LASSCF) method. LASSCF exploits a modified DMET algorithm, but it is a variational wave function method; it does not require DMET's ambiguous error function minimization, and it reproduces full-molecule CASSCF in cases where comparable DMET calculations fail. Our results for test calculations on the nitrogen double-bond dissociation potential energy curves of several diazene molecules suggest that LASSCF can be an appropriate starting point for a perturbative treatment. Outside of the context of embedding, the LAS wave function is inherently an attractive alternative to a CAS wave function because of its favorable cost scaling, which is exponential only with respect to the size of individual fragment active subspaces, rather than the whole active space of the entire system.
Collapse
Affiliation(s)
- Matthew R Hermes
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
10
|
Zhu T, de Silva P, Van Voorhis T. Implementation of the Many-Pair Expansion for Systematically Improving Density Functional Calculations of Molecules. J Chem Theory Comput 2019; 15:1089-1101. [DOI: 10.1021/acs.jctc.8b01127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianyu Zhu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Piotr de Silva
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|