1
|
Wu C. Temperature-Transferable Coarse-Grained Models for Volumetric Properties of Poly(lactic Acid). J Phys Chem B 2024; 128:358-370. [PMID: 38153413 DOI: 10.1021/acs.jpcb.3c07026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A new coarse-grained (CG) model, for which each monomer is mapped as one bead at its center of mass, was developed for simulating the volumetric properties of the polylactide (PLA) bulk. The three bonded CG potentials are first parametrized against the strain energies of the dimer, trimer, and tetramer, and the nonbonded CG potentials are then optimized to match the melt densities of the decamer. With the derived CG potentials, molecular dynamics (MD) simulations are found to reproduce thermal expansion and glass transition. By rescaling the dihedral and nonbonded potentials with temperature-independent factors, the glass transition temperature (Tg) is also satisfactorily restored with little modifications on the volumetric expansive coefficients at both rubbery and glassy states. Therefore, the finally optimized CG potentials exhibit excellent temperature transferability, as rationalized by the Simha-Boyer relation. Furthermore, it is confirmed that the dihedral torsions and nonbonded interactions play key roles in glass transition. Also, the simulated bulk moduli and conformational properties in a wide temperature range compare well with the referenced data. The proposed multiscale scheme has great potential in simulating thermo-mechanical properties of PLA and other polymers.
Collapse
Affiliation(s)
- Chaofu Wu
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, P. R. China
| |
Collapse
|
2
|
Bahrami H, Sichetti F, Puppo E, Vettori L, Liu Chung Ming C, Perry S, Gentile C, Pietroni N. Physically-based simulation of elastic-plastic fusion of 3D bioprinted spheroids. Biofabrication 2023; 15:045021. [PMID: 37607551 DOI: 10.1088/1758-5090/acf2cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
Spheroids are microtissues containing cells organized in a spherical shape whose diameter is usually less than a millimetre. Depending on the properties of the environment they are placed in, some nearby spheroids spontaneously fuse and generate a tissue. Given their potential to mimic features typical of body parts and their ability to assemble by fusing in permissive hydrogels, they have been used as building blocks to 3D bioprint human tissue parts. Parameters controlling the shape and size of a bioprinted tissue using fusing spheroid cultures include cell composition, hydrogel properties, and their relative initial position. Hence, simulating, anticipating, and then controlling the spheroid fusion process is essential to control the shape and size of the bioprinted tissue. This study presents the first physically-based framework to simulate the fusion process of bioprinted spheroids. The simulation is based on elastic-plastic solid and fluid continuum mechanics models. Both models use the 'smoothed particle hydrodynamics' method, which is based on discretizing the continuous medium into a finite number of particles and solving the differential equations related to the physical properties (e.g. Navier-Stokes equation) using a smoothing kernel function. To further investigate the effects of such parameters on spheroid shape and geometry, we performed sensitivity and morphological analysis to validate our simulations within-vitrospheroids. Through ourin-silicosimulations by changing the aforementioned parameters, we show that the proposed models appropriately simulate the range of the elastic-plastic behaviours ofin-vitrofusing spheroids to generate tissues of desired shapes and sizes. Altogether, this study presented a physically-based simulation that can provide a framework for monitoring and controlling the geometrical shape of spheroids, directly impacting future research using spheroids for tissue bioprinting.
Collapse
Affiliation(s)
- Hassan Bahrami
- Faculty of Engineering and Information Technology, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
| | | | - Enrico Puppo
- Department of Computer Science, University of Genova, Genova, Italy
| | - Laura Vettori
- Faculty of Engineering and Information Technology, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
| | - Clara Liu Chung Ming
- Faculty of Engineering and Information Technology, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
| | - Stuart Perry
- Faculty of Engineering and Information Technology, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
| | - Carmine Gentile
- Faculty of Engineering and Information Technology, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
| | - Nico Pietroni
- Faculty of Engineering and Information Technology, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
| |
Collapse
|
3
|
del Río F, Vargas LD, Chapela GA, Guzmán O. Thermodynamic perturbation theory of square-well dimers of variable width. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Fernando del Río
- Departamento de Física, Universidad Autonónoma Metropolitana, Iztapalapa, Ciudad de México, México
| | - Luis D. Vargas
- Departamento de Física, Universidad Autonónoma Metropolitana, Iztapalapa, Ciudad de México, México
| | - Gustavo A. Chapela
- Departamento de Física, Universidad Autonónoma Metropolitana, Iztapalapa, Ciudad de México, México
| | - Orlando Guzmán
- Departamento de Física, Universidad Autonónoma Metropolitana, Iztapalapa, Ciudad de México, México
| |
Collapse
|
4
|
Wu C, Li K, Ning X, Zhang L. An Enhanced Scheme for Multiscale Modeling of Thermomechanical Properties of Polymer Bulks. J Phys Chem B 2021; 125:8612-8626. [PMID: 34291641 DOI: 10.1021/acs.jpcb.1c02663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While multiscale modeling significantly enhances the capability of molecular simulations of polymer systems, it is well realized that the systematically derived coarse-grained (CG) models generally underestimate the thermomechanical properties. In this work, a charge-based mapping scheme has been adopted to include explicit electrostatic interactions and benchmarked against two typical polymers, atactic poly(methyl methacrylate) (PMMA) and polystyrene (PS). The CG potentials are parameterized against the oligomer bulks of nine monomers per chain to match the essential structural features and the two basic pressure-volume-temperature (PVT) properties, which are obtained from the all-atomistic (AA) molecular dynamics (MD) simulations at a single elevated temperature. The so-parameterized CG potentials are extended with the MD method to simulate the two polymer bulks of one hundred monomers per chain over a wide temperature range. Without any scaling, all the simulated results, including mass densities and bulk moduli at room temperature, thermal expansion coefficients at rubbery and glassy states, and glass transition temperatures (Tg), compare well with the corresponding experimental data. The proposed scheme not only contributes to realistically simulating various thermomechanical properties of both apolar and polar polymers but also allows for directly simulating their electrical properties.
Collapse
Affiliation(s)
- Chaofu Wu
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Kewen Li
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Xutao Ning
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| | - Lei Zhang
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, P. R. China
| |
Collapse
|
5
|
Weng C, Chen J, Yang J, Zhou M, Jiang B. Experimental Investigation and Molecular Dynamics Simulation on the Anti-Adhesion Behavior of Alkanethiols on Nickel Insert in Micro Injection Molding. NANOMATERIALS 2021; 11:nano11071834. [PMID: 34361218 PMCID: PMC8308251 DOI: 10.3390/nano11071834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
Due to the adhesion between the polymer melt and nickel (Ni) mold insert in the micro injection molding process, deformation defects frequently occur when the microstructures are demolded from the insert. In this study, self-assembled alkanethiols were applied to modify the surface of Ni mold insert to reduce its surface energy. Experimental trials were undertaken to explore the effect of alkanethiols coating on the replication quality. After that, molecular dynamics (MD) simulation was then used to investigate the adhesion behavior between the self-assembled coating and polypropylene (PP) by establishing three different types of alkanethiol material. The interaction energy, the potential energy change and radial distribution function were calculated to study the anti-adhesion mechanism. Experimental results show that all the three coatings can effectively decrease the adhesion and therefore promote the replication fidelity. It is demonstrated in MD simulation that the adhesion mainly comes from the van der Waals (vdW) force at the interface. The arrangement of sulfur atom on the Ni surface results in different absorbing behaviors. Compared with that of the PP–Ni interface, the interfacial energy and adhesion work after surface treatment is significantly reduced.
Collapse
|
6
|
Clark JA, Santiso EE. SAFT-γ-Mie Cross-Interaction Parameters from Density Functional Theory-Predicted Multipoles of Molecular Fragments for Carbon Dioxide, Benzene, Alkanes, and Water. J Phys Chem B 2021; 125:3867-3882. [PMID: 33826844 DOI: 10.1021/acs.jpcb.1c00851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Determining unlike-pair interaction parameters, whether for group contribution equation of state or molecular simulations, is a challenge for the prediction of thermodynamic properties. As the number of components and their respective complexity increase, it becomes impractical to fit all the unlike interactions. Lorentz-Berthelot combining rules work well for systems, where the main interactions are dispersion forces, but they do not account for electrostatics. In this work, we derive predictive combining rules within the SAFT-γ-Mie framework. In the resulting model, the unlike-pair interactions account for the effect of ionization energies, partial charges, dipole moments, and quadrupole moments. We then estimate these properties for molecular fragments using density functional theory calculations and demonstrate their use to obtain realistic cross-interaction energies without the need for experimental data. An open-source python package, Multipole Approach to Predictively Scale Cross-Interactions, is included to facilitate use of the methods presented in this work. A good qualitative agreement was obtained for all phase equilibria calculations of binary mixtures containing carbon dioxide with propane, hexane, benzene, and water, as well as mixtures of hexane and benzene. Finally, we discuss future improvements to our methodology, including the use of physical insights when fitting self-interaction parameters.
Collapse
Affiliation(s)
- Jennifer A Clark
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695, United States
| | - Erik E Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, 27695, United States
| |
Collapse
|
7
|
Walker CC, Genzer J, Santiso EE. Effect of Poly(vinyl butyral) Comonomer Sequence on Adhesion to Amorphous Silica: A Coarse-Grained Molecular Dynamics Study. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47879-47890. [PMID: 32921047 DOI: 10.1021/acsami.0c10747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Modulating a comonomer sequence, in addition to the overall chemical composition, is the key to unlocking the true potential of many existing commercial copolymers. We employ coarse-grained molecular dynamics (MD) simulations to study the behavior of random-blocky poly(vinyl butyral-co-vinyl alcohol) (PVB) melts in contact with an amorphous silica surface, representing the interface found in laminated safety glass. Our two-pronged coarse-graining approach utilizes both macroscopic thermophysical data and all-atom MD simulation data. Polymer-polymer nonbonded interactions are described by the fused-sphere SAFT-γ Mie equation of state, while bonded interactions are derived using Boltzmann inversion to match the bond and angle distributions from all-atom PVB chains. Spatially dependent polymer-surface interactions are mapped from a hydroxylated all-atom amorphous silica slab model and all-atom monomers to an external potential acting on the coarse-grained sites. We discovered an unexpected complex relationship between the blockiness parameter and the adhesion energy. The adhesion strength between PVB copolymers with intermediate VA content and silica was found to be maximal for random-blocky copolymers with a moderately high degree of blockiness rather than for diblock copolymers. We attribute this to two main factors: (1) changes in morphology, which dramatically alter the number of VA beads interacting with the surface and (2) a non-negligible contribution of vinyl butyral (VB) monomers to adhesion energy because of their preference to adsorb to zones with low hydroxyl density on the silica surface.
Collapse
Affiliation(s)
- Christopher C Walker
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Erik E Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
8
|
Tasche J, Sabattié EFD, Thompson RL, Campana M, Wilson MR. Oligomer/Polymer Blend Phase Diagram and Surface Concentration Profiles for Squalane/Polybutadiene: Experimental Measurements and Predictions from SAFT-γ Mie and Molecular Dynamics Simulations. Macromolecules 2020; 53:2299-2309. [PMID: 32308214 PMCID: PMC7161083 DOI: 10.1021/acs.macromol.9b02155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/12/2020] [Indexed: 01/16/2023]
Abstract
The compatibility and surface behavior of squalane-polybutadiene mixtures are studied by experimental cloud point and neutron reflectivity measurements, statistical associating fluid theory (SAFT), and molecular dynamics (MD) simulations. A SAFT-γ Mie model is shown to be successful in capturing the cloud point curves of squalane-polybutadiene and squalane-cis-polybutadiene binary mixtures, and the same SAFT-γ Mie model is used to develop a thermodynamically consistent top-down coarse-grained force field to describe squalane-polybutadiene. Coarse-grained molecular dynamics simulations are performed to study surface behavior for different concentrations of squalane, with the system exhibiting surface enrichment and a wetting transition. Simulated surface profiles are compared with those obtained by fitting to neutron reflectivity data obtained from thin films composed of deuterated squalane (d-sq)-polybutadiene. The presented top-down parametrization methodology is a fast and thermodynamically reliable approach for predicting properties of oligomer-polymer mixtures, which can be challenging for either theory or MD simulations alone.
Collapse
Affiliation(s)
- Jos Tasche
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Elise F D Sabattié
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Richard L Thompson
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Mario Campana
- Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Mark R Wilson
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
9
|
Walker CC, Genzer J, Santiso EE. Extending the fused-sphere SAFT-γ Mie force field parameterization approach to poly(vinyl butyral) copolymers. J Chem Phys 2020; 152:044903. [DOI: 10.1063/1.5126213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Christopher C. Walker
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Erik E. Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
10
|
Pervaje AK, Walker CC, Santiso EE. Molecular simulation of polymers with a SAFT-γ Mie approach. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1645331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Amulya K. Pervaje
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Christopher C. Walker
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Erik E. Santiso
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
11
|
Xi S, Wang L, Liu J, Chapman W. Thermodynamics, Microstructures, and Solubilization of Block Copolymer Micelles by Density Functional Theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5081-5092. [PMID: 30855146 DOI: 10.1021/acs.langmuir.8b04336] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Block copolymer micelle is one of the most versatile self-assembled structures with applications in drug delivery, cosmetic products, and micellar-enhanced ultrafiltration. The key to design an effective block copolymer to form micelles is to understand how molecular architecture affects critical micelle concentrations, micellar dimensions, and partitioning of solute into the micelle. In this work, we studied micelles from nonionic block copolymers using interfacial statistical associating fluid theory a density functional theory, which explicitly includes block copolymer-water hydrogen bonding and water-water hydrogen bonding. We are able to predict and explain how micellar thermodynamic properties depend on polymer chain architecture. Dimension and aggregation of micelles are investigated for block copolymers with different hyrophobes and hydrophiles. The effects of temperature and pressure on micelle stability are also captured by the theory. The enhanced solubility of hydrophobic substance in water by micelle loading is demonstrated, and predicted solute distribution answers the question about the locus of benzene in micelles from a theoretical perspective.
Collapse
Affiliation(s)
- Shun Xi
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Le Wang
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Jinlu Liu
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| | - Walter Chapman
- Department of Chemical and Biomolecular Engineering , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|