1
|
Khatymov RV, Muftakhov MV, Tuktarov RF, Shchukin PV, Khatymova LZ, Pancras E, Terentyev AG, Petrov NI. Resonant electron capture by polycyclic aromatic hydrocarbon molecules: Effects of aza-substitution. J Chem Phys 2024; 160:124310. [PMID: 38533882 DOI: 10.1063/5.0195316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Resonant electron capture by aza and diaza derivatives of phenanthrene (7,8-benzoquinoline and 1,10-phenanthroline) and anthracene (acridine and phenazine) at incident free electron energies (Ee) in the range of 0-15 eV was studied. All compounds except 7,8-benzoquinoline form long-lived molecular ions (M-) at thermal electron energies (Ee ∼ 0 eV). Acridine and phenazine also form such ions at epithermal electron energies up to Ee = 1.5-2.5 eV. The lifetimes (τa) of M- with respect to electron autodetachment are proportional to the extent of aza-substitution and increase on going from molecules with bent geometry of the fused rings (azaphenanthrenes) to linear isomers (azaanthracenes). These regularities are due to an increase in the adiabatic electron affinities (EAa) of the molecules. The EAa values of the molecules under study were comprehensively assessed based on a comparative analysis of the measured τa values using the Rice-Ramsperger-Kassel-Marcus theory, the electronic structure analysis using the molecular orbital approach, as well as the density functional calculations of the total energy differences between the molecules and anions. The only fragmentation channel of M- ions from the compounds studied is abstraction of hydrogen atoms. When studying [M-H]- ions, electron autodetachment processes were observed, the τa values were measured, and the appearance energies were determined. A comparative analysis of the gas-phase acidity of the molecules and the EAa values of the [M-H]· radicals revealed their proportionality to the EAa values of the parent molecules.
Collapse
Affiliation(s)
- Rustem V Khatymov
- Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
| | - Mars V Muftakhov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya, 151, 450075 Ufa, Russia
| | - Renat F Tuktarov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya, 151, 450075 Ufa, Russia
| | - Pavel V Shchukin
- Institute of Molecule and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya, 151, 450075 Ufa, Russia
| | - Lyaysan Z Khatymova
- Institute of Molecule and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya, 151, 450075 Ufa, Russia
| | - Eugene Pancras
- Ufa State Petroleum Technological University, ul. Kosmonavtov, 1, 450064 Ufa, Russia
| | - Andrey G Terentyev
- Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
| | - Nikolay I Petrov
- Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
| |
Collapse
|
2
|
Kopyra J, Abdoul-Carime H. Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:980-987. [PMID: 37800122 PMCID: PMC10548254 DOI: 10.3762/bjnano.14.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Nowadays, organometallic complexes receive particular attention because of their use in the design of pure nanoscale metal structures. In the present work, we present results obtained from a series of studies on the degradation of metal(II) bis(acetylacetonate)s induced by low-energy electrons. These slow particles induce the formation of the acetylacetonate anion, [acac]-, and the parent anion as the most dominant species at incident electron energies near 0 eV. They also fragment the organometallic compounds via various competitive reaction channels that occur at higher energies via dissociative electron attachment. The reported data may contribute to a better understanding of the physical chemistry underlying the electron-molecule interactions, which is crucial for potential applications of these molecular systems in the deposition of nanoscale structures.
Collapse
Affiliation(s)
- Janina Kopyra
- Siedlce University of Natural Sciences and Humanities, Faculty of Sciences, 3 Maja 54, 08-110 Siedlce, Poland
| | - Hassan Abdoul-Carime
- Universite de Lyon, Université Lyon 1, Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, UMR5822, F-69003 Lyon, France
| |
Collapse
|
3
|
Khatymov RV, Terentyev AG. Resonant electron capture negative ion mass spectrometry: the state of the art and the potential for solving analytical problems. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3132-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Kopyra J, Rabilloud F, Abdoul-Carime H. Decomposition of Bis(acetylacetonate)zinc(II) by Slow Electrons. Inorg Chem 2020; 59:12788-12792. [PMID: 32830979 DOI: 10.1021/acs.inorgchem.0c01842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The production of zinc-containing nanostructures has a large variety of applications. Using electron beam techniques to degrade organometallic molecules for that purpose is perhaps one of the most versatile methods. In this work, we investigate the scattering of low-energy (<12 eV) electrons with bis(acetylacetonate)zinc(II) molecules. We show that core excited and high-lying shape resonances are mainly responsible for the production of the precursor anions as well as the ligand negative fragments, which are observed exclusively at electron energies of >3 eV. The mechanisms for electron capture and then molecular dissociation are discussed in terms of density functional theory studies.
Collapse
Affiliation(s)
- Janina Kopyra
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Franck Rabilloud
- Universite de Lyon, Universite Claude Bernard Lyon 1, CNRS, Institut Lumiere Matiere, UMR5306, F-69622 Villeurbanne, France
| | - Hassan Abdoul-Carime
- Universite de Lyon, Universite Lyon 1, Institut de Physique des 2 Infinis, CNRS/IN2P3, UMR5822, F-69003 Lyon, France
| |
Collapse
|
5
|
Skeletal Rearrangements of the C240 Fullerene: Efficient Topological Descriptors for Monitoring Stone–Wales Transformations. MATHEMATICS 2020. [DOI: 10.3390/math8060968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stone–Wales rearrangements of the fullerene surface are an uncharted field in theoretical chemistry. Here, we study them on the example of the giant icosahedral fullerene C240 to demonstrate the complex chemical mechanisms emerging on its carbon skeleton. The Stone–Wales transformations of C240 can produce the defected isomers containing heptagons, extra pentagons and other unordinary rings. Their formations have been described in terms of (i) quantum-chemically calculated energetic, molecular, and geometric parameters; and (ii) topological indices. We have found the correlations between the quantities from the two sets that point out the role of long-range topological defects in governing the formation and the chemical reactivity of fullerene molecules.
Collapse
|
6
|
Khatymov RV, Shchukin PV, Muftakhov MV, Yakushchenko IK, Yarmolenko OV, Pankratyev EY. A unified statistical RRKM approach to the fragmentation and autoneutralization of metastable molecular negative ions of hexaazatrinaphthylenes. Phys Chem Chem Phys 2020; 22:3073-3088. [PMID: 31965122 DOI: 10.1039/c9cp05397b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the compounds promising for use as n-type semiconductors in organic electronics and energy storage devices, hexaazatrinaphthylene (HATNA) and its derivative hexamethoxy-hexaazatrinaphthylene (HMHATA), the monomolecular processes occurring under the exposure of molecules to low-energy (0-15 eV) free electrons were studied by means of resonant electron capture negative ion mass spectrometry. Resonant electron attachment results in the formation of eminently long-lived molecular negative ions (MNIs) in an abnormally wide range of incident electron energy (Ee) from 0 to 5-7 eV. For both compounds, this observation serves as an indication of the strong electron-accepting properties and high stability of MNIs against electron autodetachment. A weak yield of the only fragment NIs, dehydrogenated anions, was detected for HATNA at Ee > 6 eV. MNIs of HMHATA are less stable to dissociative decay because of the presence of weakly bound terminal substituents. This is evidenced by the mass spectral observation of intense fragmentation occurring above Ee≈ 1 eV and leading to a loss of up to 3 methyl groups as the Ee increases. A series of metastable NI peaks observed in the mass spectra testify to the delayed and sequential nature of fragmentation. Based on the principles of statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory, the theoretical model of dissociative decay of NIs was developed and then adopted to quantify the rates of ground-state anion decay via electron autodetachment. The experimentally measured electron autodetachment lifetimes and fragmentation rates were best reproduced by the model at molecular adiabatic electron affinities preset to 2.15 eV for HATNA and 1.88 eV for HMHATA, in reasonable agreement with the quantum chemical DFT PBE/3ζ predictions.
Collapse
Affiliation(s)
- Rustem V Khatymov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450075, Russia.
| | - Pavel V Shchukin
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450075, Russia.
| | - Mars V Muftakhov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450075, Russia.
| | - Igor K Yakushchenko
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russia
| | - Ol'ga V Yarmolenko
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russia
| | - Evgeniy Yu Pankratyev
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa 450075, Russia.
| |
Collapse
|