Xiang B, Xiong W. Molecular vibrational polariton: Its dynamics and potentials in novel chemistry and quantum technology.
J Chem Phys 2021;
155:050901. [PMID:
34364350 DOI:
10.1063/5.0054896]
[Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular vibrational polaritons, a hybridized quasiparticle formed by the strong coupling between molecular vibrational modes and photon cavity modes, have attracted tremendous attention in the chemical physics community due to their peculiar influence on chemical reactions. At the same time, the half-photon half-matter characteristics of polaritons make them suitable to possess properties from both sides and lead to new features that are useful for photonic and quantum technology applications. To eventually use polaritons for chemical and quantum applications, it is critical to understand their dynamics. Due to the intrinsic time scale of cavity modes and molecular vibrational modes in condensed phases, polaritons can experience dynamics on ultrafast time scales, e.g., relaxation from polaritons to dark modes. Thus, ultrafast vibrational spectroscopy becomes an ideal tool to investigate such dynamics. In this Perspective, we give an overview of recent ultrafast spectroscopic works by our group and others in the field. These recent works show that molecular vibrational polaritons can have distinct dynamics from its pure molecular counterparts, such as intermolecular vibrational energy transfer and hot vibrational dynamics. We then discuss some current challenges and future opportunities, such as the possible use of ultrafast vibrational dynamics, to understand cavity-modified reactions and routes to develop molecular vibrational polaritons as new room temperature quantum platforms.
Collapse