1
|
Zhao L, Lin W, Fan X, Song Y, Lu H, Liu Y. High precision, low excitation capacitance measurement methods from 10 mK to room temperature. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:053910. [PMID: 35649778 DOI: 10.1063/5.0087772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Capacitance measurement is a useful technique in studying quantum devices, as it directly probes the local particle charging properties, i.e., the system compressibility. Here, we report one approach that can measure capacitance from mK to room temperature with excellent accuracy. Our experiments show that such a high-precision technique is able to reveal delicate and essential properties of high-mobility two-dimensional electron systems.
Collapse
Affiliation(s)
- Lili Zhao
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Wenlu Lin
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Xing Fan
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yuanjun Song
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Hong Lu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yang Liu
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Lemme MC, Wagner S, Lee K, Fan X, Verbiest GJ, Wittmann S, Lukas S, Dolleman RJ, Niklaus F, van der Zant HSJ, Duesberg GS, Steeneken PG. Nanoelectromechanical Sensors Based on Suspended 2D Materials. RESEARCH (WASHINGTON, D.C.) 2020; 2020:8748602. [PMID: 32766550 PMCID: PMC7388062 DOI: 10.34133/2020/8748602] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 01/09/2023]
Abstract
The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using suspended membranes of 2D materials in pressure sensors, microphones, accelerometers, and mass and gas sensors. In this review, we explain the different sensing concepts and give an overview of the relevant material properties, fabrication routes, and device operation principles. Finally, we discuss sensor readout and integration methods and provide comparisons against the state of the art to show both the challenges and promises of 2D material-based nanoelectromechanical sensing.
Collapse
Affiliation(s)
- Max C. Lemme
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 2, 52074 Aachen, Germany
- AMO GmbH, Advanced Microelectronic Center Aachen (AMICA), Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| | - Stefan Wagner
- AMO GmbH, Advanced Microelectronic Center Aachen (AMICA), Otto-Blumenthal-Str. 25, 52074 Aachen, Germany
| | - Kangho Lee
- Institute of Physics, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Xuge Fan
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10, 10044 Stockholm, Sweden
| | - Gerard J. Verbiest
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
| | | | - Sebastian Lukas
- Chair of Electronic Devices, RWTH Aachen University, Otto-Blumenthal-Str. 2, 52074 Aachen, Germany
| | - Robin J. Dolleman
- 2nd Institute of Physics, RWTH Aachen University, Otto-Blumenthal-Str., 52074 Aachen, Germany
| | - Frank Niklaus
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas Väg 10, 10044 Stockholm, Sweden
| | - Herre S. J. van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| | - Georg S. Duesberg
- Institute of Physics, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Peter G. Steeneken
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands
| |
Collapse
|