1
|
Cui Y, Yu H, Abbas Z, Wang Z, Wang L, Wang D. PZT Composite Film Preparation and Characterization Using a Method of Sol-Gel and Electrohydrodynamic Jet Printing. MICROMACHINES 2023; 14:918. [PMID: 37241542 PMCID: PMC10221062 DOI: 10.3390/mi14050918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Lead zircon titanate (PZT) composite films were advantageously prepared by a novel hybrid method of sol-gel and electrohydrodynamic jet (E-jet) printing. PZT thin films with thicknesses of 362 nm, 725 nm and 1092 nm were prepared on Ti/Pt bottom electrode via Sol-gel method, and then the PZT thick films were printed on the base of the PZT thin films via E-jet printing to form PZT composite films. The physical structure and electrical properties of the PZT composite films were characterized. The experimental results showed that, compared with PZT thick films prepared via single E-jet printing method, PZT composite films had fewer micro-pore defects. Moreover, the better bonding with upper and lower electrodes and higher preferred orientation of crystals were examined. The piezoelectric properties, dielectric properties and leakage currents of the PZT composite films were obviously improved. The maximum piezoelectric constant of the PZT composite film with a thickness of 725 nm was 69.4 pC/N, the maximum relative dielectric constant was 827 and the leakage current was reduced to 1.5 × 10-6A at a test voltage of 200V. This hybrid method can be widely useful to print PZT composite films for the application of micro-nano devices.
Collapse
Affiliation(s)
- Yan Cui
- Key Laboratory of Precision and Special Processing of Ministry of Education, Dalian University of Technology, Dalian 116024, China; (H.Y.); (Z.W.); (L.W.); (D.W.)
| | - Hao Yu
- Key Laboratory of Precision and Special Processing of Ministry of Education, Dalian University of Technology, Dalian 116024, China; (H.Y.); (Z.W.); (L.W.); (D.W.)
| | - Zeshan Abbas
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic, Shenzhen 518055, China;
| | - Zixiang Wang
- Key Laboratory of Precision and Special Processing of Ministry of Education, Dalian University of Technology, Dalian 116024, China; (H.Y.); (Z.W.); (L.W.); (D.W.)
| | - Lunxiang Wang
- Key Laboratory of Precision and Special Processing of Ministry of Education, Dalian University of Technology, Dalian 116024, China; (H.Y.); (Z.W.); (L.W.); (D.W.)
| | - Dazhi Wang
- Key Laboratory of Precision and Special Processing of Ministry of Education, Dalian University of Technology, Dalian 116024, China; (H.Y.); (Z.W.); (L.W.); (D.W.)
- Ningbo Institute of Dalian University of Technology, Ningbo 315000, China
| |
Collapse
|
2
|
Duan Y, Li H, Yang W, Shao Z, Wang Q, Huang Y, Yin Z. Mode-tunable, micro/nanoscale electrohydrodynamic deposition techniques for optoelectronic device fabrication. NANOSCALE 2022; 14:13452-13472. [PMID: 36082930 DOI: 10.1039/d2nr03049g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid development of fascinating new optoelectronic materials and devices calls for the innovative production of micro/nanostructures in a high-resolution, large-scale, low-cost fashion, preferably compatible with flexible/wearable applications. Powerful electrohydrodynamic (EHD) deposition techniques, which generate micro/nanostructures using high electrical forces, exhibit unique advantages in high printing resolution (<1 μm), tunable printing modes (electrospray for films, electrospinning for fibers and EHD jet printing for dots), and wide material applicability (viscosity 1-10 000 cps), making them attractive in the fabrication of high-density and high-tech optoelectronic devices. This review highlights recent advances related to EHD-deposited optoelectronics, ranging from solar cells, photodetectors, and light-emitting diodes, to transparent electrodes, with detailed descriptions of the EHD-based jetting mechanism, ink formulation requirements and corresponding jetting modes to obtain functional micro/nanostructures. Finally, a brief summary and an outlook on the future perspectives are proposed.
Collapse
Affiliation(s)
- Yongqing Duan
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huayang Li
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Weili Yang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhilong Shao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qilu Wang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - YongAn Huang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhouping Yin
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Bioinspired gelatin nano-film implanted into composite scaffold exhibiting both expandable adhesion and enhanced proliferation. Int J Biol Macromol 2022; 220:1570-1578. [PMID: 36100004 DOI: 10.1016/j.ijbiomac.2022.09.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
Tissue engineering technology provides a new treatment to the cartilage damage. Recent progress has focused on coating strategies with the printed scaffold surface, using various materials such as bioactive nanocomposites. However, the fracture and exfoliation of printed scaffolds remain challenges due to their poor adhesion on smooth substrates. These limitations can be offset by developing a versatile film. Here, inspired by the mechanism of the wet adhesion of snails, we introduced a biomimetic nanoscale gelatin film between a smooth conductive slide and a scaffold, which enhanced early cell adhesion rates through water absorption, swelling and adhesion. A bionic technique of preparing gelatin nanofilms and PVP/PCL 3D scaffolds, which involved E-Jet atomization deposition and E-Jet printing techniques based on the electrohydrodynamic effect, was investigated. It is found that the composite scaffold with 400 nm gelatin nanofilm significantly enhances cell attachment (from 62 % to 87 %) and proliferation (increased 6.5 times in 7 days). Collectively, this study highlights the combination of biomimetic nanoscale adhesive film in promoting cell adhesion and cartilage differentiation, which benefiting from water absorption and swelling of gelatin nanofilm. This work provides a new idea for the potential application in the orthopedics field.
Collapse
|