1
|
Gross N, Kuhs CT, Ostovar B, Chiang WY, Wilson KS, Volek TS, Faitz ZM, Carlin CC, Dionne JA, Zanni MT, Gruebele M, Roberts ST, Link S, Landes CF. Progress and Prospects in Optical Ultrafast Microscopy in the Visible Spectral Region: Transient Absorption and Two-Dimensional Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14557-14586. [PMID: 37554548 PMCID: PMC10406104 DOI: 10.1021/acs.jpcc.3c02091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/24/2023] [Indexed: 08/10/2023]
Abstract
Ultrafast optical microscopy, generally employed by incorporating ultrafast laser pulses into microscopes, can provide spatially resolved mechanistic insight into scientific problems ranging from hot carrier dynamics to biological imaging. This Review discusses the progress in different ultrafast microscopy techniques, with a focus on transient absorption and two-dimensional microscopy. We review the underlying principles of these techniques and discuss their respective advantages and applicability to different scientific questions. We also examine in detail how instrument parameters such as sensitivity, laser power, and temporal and spatial resolution must be addressed. Finally, we comment on future developments and emerging opportunities in the field of ultrafast microscopy.
Collapse
Affiliation(s)
- Niklas Gross
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Christopher T. Kuhs
- Army
Research Laboratory-South, U.S. Army DEVCOM, Houston, Texas 77005, United States
| | - Behnaz Ostovar
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Wei-Yi Chiang
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Kelly S. Wilson
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tanner S. Volek
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary M. Faitz
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Claire C. Carlin
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Department
of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Martin T. Zanni
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Martin Gruebele
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sean T. Roberts
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Stephan Link
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Christy F. Landes
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Zhu Y, Guo L, Guo J, Zhao L, Li C, Qiu X, Qin Y, Gu X, Sun X, Tang Z. Room-Temperature Spin Transport in Metal Nanocluster-Based Spin Valves. Angew Chem Int Ed Engl 2023; 62:e202213208. [PMID: 36445822 DOI: 10.1002/anie.202213208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
As a new type of inorganic-organic hybrid semiconductor, quantum-confined atomically precise metal nanoclusters (MNCs) have been widely applied in the fields of chemical sensing, optical imaging, biomedicine and catalysis. Herein, we successfully design and fabricate the first example of MNC-based spin valves (SVs) that exhibit remarkable magnetoresistance (MR) value up to 1.6 % even at room temperature (300 K). The concomitant photoresponse of MNC-based SVs unambiguously confirms that the spin-polarized electron transmission takes place across the MNC interlayer. Furthermore, the spin-dependent transport property of MNC-based SVs is largely varied by changing the atomic structure of MNCs. Both experimental proofs and quantum chemistry calculations reveal that the atomic structure-discriminative spin transport behavior is attributed to the distinct spin-orbit coupling (SOC) effect of MNCs.
Collapse
Affiliation(s)
- Yanfei Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lidan Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Luyang Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chunyan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China
| | - Xueying Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yang Qin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianrong Gu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangnan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Kong J, Huo D, Jie J, Wu Y, Wan Y, Song Y, Zhou M. Effect of single electrons on the excited state dynamics of rod-shaped Au 25 nanoclusters. NANOSCALE 2021; 13:19438-19445. [PMID: 34788780 DOI: 10.1039/d1nr06208e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The excited state dynamics of small-sized metal nanoclusters are dependent on their crystal structures, while the effect of the charge state remains largely unknown. Here, we report the influence of single electrons on the excited-state dynamics of non-superatom Au clusters by comparing the transient absorption isotropy and anisotropy dynamics of two rod-shaped Au25 nanoclusters protected by organic ligands. Two decay lifetimes (0.9 ps and 2.3 μs) can be identified in the excited state relaxation of Au252+ rods, which are assigned to the internal conversion from a higher to lower excited state and the relaxation to the ground state, respectively. With the addition of one electron, an additional 660 ps decay is observed in Au25+, which should originate from the presence of a single electron occupied molecular orbital. Transient anisotropy measurements reveal a 500 ps rotational diffusion process in both the nanoclusters, while the initial dipole moment orientation is found to be highly dependent on the charge state. These results are of importance to understanding the effect of the charge state on the optical properties of metal nanoclusters.
Collapse
Affiliation(s)
- Jie Kong
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Dayujia Huo
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yanzhen Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yongbo Song
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China
| | - Meng Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
4
|
Hu F, Guan ZJ, Yang G, Wang JQ, Li JJ, Yuan SF, Liang GJ, Wang QM. Molecular Gold Nanocluster Au 156 Showing Metallic Electron Dynamics. J Am Chem Soc 2021; 143:17059-17067. [PMID: 34609874 DOI: 10.1021/jacs.1c06716] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The boundary between molecular and metallic gold nanoclusters is of special interest. The difficulty in obtaining atomically precise nanoclusters larger than 2 nm limits the determination of such a boundary. The synthesis and total structural determination of the largest all-alkynyl-protected gold nanocluster (Ph4P)6[Au156(C≡CR)60] (R = 4-CF3C6H4-) (Au156) are reported. It presents an ideal platform for studying the relationship between the structure and the metallic nature. Au156 has a rod shape with the length and width of the kernel being 2.38 and 2.04 nm, respectively. The cluster contains a concentric Au126 core structure (Au46@Au50@Au30) protected by 30 linear RC≡C-Au-C≡CR staple motifs. It is interesting that Au156 displays multiple excitonic peaks in the steady-state absorption spectrum (molecular) and pump-power-dependent excited-state dynamics as revealed in the transient absorption spectrum (metallic), which indicates that Au156 is a critical crossover cluster for the transition from molecular to metallic state. Au156 is the smallest-sized gold nanocluster showing metal-like electron dynamics, and it is recognized that the cluster shape is one of the important factors determining the molecular or metallic nature of a gold nanocluster.
Collapse
Affiliation(s)
- Feng Hu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Gaoyuan Yang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, P.R. China
| | - Jia-Qi Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Jiao-Jiao Li
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Shang-Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Gui-Jie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, P.R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
5
|
Jeffries WR, Wallace JL, Knappenberger KL. Ultrafast relaxation dynamics of Au 38(SC 6H 13) 24 monolayer-protected clusters resolved by two-dimensional electronic spectroscopy. J Chem Phys 2021; 155:124303. [PMID: 34598589 DOI: 10.1063/5.0056832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electronic relaxation dynamics of neutral Au38(SC6H13)24 monolayer-protected clusters (MPCs), following excitation of the mixed 15 875 cm-1 charge transfer resonance, were studied using femtosecond transient absorption (fsTA) and two-dimensional electronic spectroscopy (2DES). The excited carriers relax by three different mechanisms, including an ∼100 fs HOMO-12/-13 to HOMO-4/-6 hole transfer, picosecond HOMO-4/-6 to HOMO hole transfer, and subsequent electron-hole recombination that persisted beyond the hundreds of picoseconds measurement range. The fsTA data revealed two transient bleach components at 15 820 and 15 625 cm-1, where the lower frequency component exhibited a delayed first-order buildup of 80 ± 25 fs that matched the decay of the high-energy bleach component (110 ± 45 fs). These results suggested that the excited charge carriers internally relax within the exited-state manifold in ≈100 fs. 2DES resolved multiple electronic fine-structure transient peaks that spanned excitation frequencies ranging from 15 500 to 16 100 cm-1. State-to-state dynamics were understood by the analysis of time-dependent 2DES transient signal amplitudes at numerous excitation-detection frequency combinations. An off-diagonal cross peak at 15 825-15 620 cm-1 excitation-detection signified the HOMO-12/-13 to HOMO-4/-6 hole transfer process. The lowest-frequency (15 620 cm-1) 2DES diagonal fine-structure peak exhibited instantaneous amplitude but intensified following a 75 ± 10 fs buildup when compared to diagonal peaks at higher frequencies. This observation indicated that the charge transfer resonance in Au38(SC6H13)24 MPCs is comprised of several electronic transitions of unique spectral weights, which may result from different orbital contributions associated with specific cluster domains. The use of 2DES in combination with structurally precise MPCs can provide a platform for understanding structure-dependent electronic dynamics in metal nanoclusters and technologically important metal-chalcogenide interfaces.
Collapse
Affiliation(s)
- William R Jeffries
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jordan L Wallace
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kenneth L Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
6
|
Herbert PJ, Knappenberger KL. Spin-Polarized Photoluminescence in Au 25 (SC 8 H 9 ) 18 Monolayer-Protected Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004431. [PMID: 33511771 DOI: 10.1002/smll.202004431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Here, the observation of spin-polarized emission for the Au25 (SC8 H9 )18 monolayer-protected cluster (MPC) is reported. Variable-temperature variable-field magnetic circular photoluminescence (VTV H ⇀ -MCPL) measurements are combined with VT-PL spectroscopy to provide state-resolved characterization of the transient electronic structure and spin-polarized electron-hole recombination dynamics of Au25 (SC8 H9 )18 . Through analysis of VTV H ⇀ -MCPL measurements, a low energy (1.64 eV) emission peak is assigned to intraband relaxation between core-metal-localized superatom-D to -P orbitals. Two higher energy interband components (1.78 eV, 1.94 eV) are assigned to relaxation from superatom-D orbitals to states localized to the inorganic semirings. For both intraband superatom-based or interband relaxation mechanisms, the extent of spin-polarization, quantified as the degree of circular polarization (DOCP), is determined by state-specific electron-vibration coupling strengths and energy separations of bright and dark electronic fine-structure levels. At low temperatures (<60 K), metal-metal superatom-based intraband transitions dominate the global PL emission. At higher temperatures (>60 K), interband ligand-based emission is dominant. In the low-temperature PL regime, increased sample temperature results in larger global PL intensity. In the high-temperature regime, increased temperature quenches interband radiative recombination. The relative intensity for each PL mechanism is discussed in terms of state-specific electronic-vibrational coupling strengths and related to the total angular momentum, quantified by Landé g-factors.
Collapse
Affiliation(s)
- Patrick J Herbert
- Department of Chemistry, The Pennsylvania University, University Park, PA, 16802, USA
| | | |
Collapse
|
7
|
Zhou M, Jin R. Optical Properties and Excited-State Dynamics of Atomically Precise Gold Nanoclusters. Annu Rev Phys Chem 2021; 72:121-142. [PMID: 33297734 DOI: 10.1146/annurev-physchem-090419-104921] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the excited-state dynamics of nanomaterials is essential to their applications in photoenergy storage and conversion. This review summarizes recent progress in the excited-state dynamics of atomically precise gold (Au) nanoclusters (NCs). We first discuss the electronic structure and typical relaxation pathways of Au NCs from subpicoseconds to microseconds. Unlike plasmonic Au nanoparticles, in which collective electron excitation dominates, Au NCs show single-electron transitions and molecule-like exciton dynamics. The size-, shape-, structure-, and composition-dependent dynamics in Au NCs are further discussed in detail. For small-sized Au NCs, strong quantum confinement effects give rise to relaxation dynamics that is significantly dependent on atomic packing, shape, and heteroatom doping. For relatively larger-sized Au NCs, strong size dependence can be observed in exciton and electron dynamics. We also discuss the origin of coherent oscillations and their roles in excited-state relaxation. Finally, we provide our perspective on future directions in this area.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA;
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA;
| |
Collapse
|
8
|
Liu Z, Li Y, Shin W, Jin R. Observation of Core Phonon in Electron-Phonon Coupling in Au 25 Nanoclusters. J Phys Chem Lett 2021; 12:1690-1695. [PMID: 33560861 DOI: 10.1021/acs.jpclett.1c00050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Temperature-dependent optical properties are of paramount importance for fundamentally understanding the electron-phonon interactions and phonon modes in atomically precise nanocluster materials. In this work, low-temperature optical absorption spectra of the icosahedral [Au25(SR)18]- nanocluster are measured from room temperature down to liquid helium temperature by adopting a thin-film-based technique. The thin-film measurement is further compared with results from the previous solution-based method. Interestingly, the previously missing core phonon is revealed by a quantitative analysis of the film data through peak deconvolution and fitting of the temperature trend with a theoretical model. The two lowest-energy absorption peaks (at 1.6 and 1.8 eV) of Au25 are determined to couple with the staple-shell phonon (average energy ∼350 cm-1) in the solution state, but in the solid state these electronic transitions couple with the core phonon (average energy ∼180 cm-1). The suppression of the staple-shell phonon in the solid state is attributed to the intracluster and cluster-matrix interactions.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wonyong Shin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
9
|
Zeng C, Weitz A, Withers G, Higaki T, Zhao S, Chen Y, Gil RR, Hendrich M, Jin R. Controlling magnetism of Au 133(TBBT) 52 nanoclusters at single electron level and implication for nonmetal to metal transition. Chem Sci 2019; 10:9684-9691. [PMID: 32015802 PMCID: PMC6977549 DOI: 10.1039/c9sc02736j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
The [Au133(SR)52]q nanocluster is discovered to possess one spin per particle when q = 0, but no unpaired electron when q = +1.
The transition from the discrete, excitonic state to the continuous, metallic state in thiolate-protected gold nanoclusters is of fundamental interest and has attracted significant efforts in recent research. Compared with optical and electronic transition behavior, the transition in magnetism from the atomic gold paramagnetism (Au 6s1) to the band behavior is less studied. In this work, the magnetic properties of 1.7 nm [Au133(TBBT)52]0 nanoclusters (where TBBT = 4-tert-butylbenzenethiolate) with 81 nominal “valence electrons” are investigated by electron paramagnetic resonance (EPR) spectroscopy. Quantitative EPR analysis shows that each cluster possesses one unpaired electron (spin), indicating that the electrons fill into discrete orbitals instead of a continuous band, for that one electron in the band would give a much smaller magnetic moment. Therefore, [Au133(TBBT)52]0 possesses a nonmetallic electronic structure. Furthermore, we demonstrate that the unpaired spin can be removed by oxidizing [Au133(TBBT)52]0 to [Au133(TBBT)52]+ and the nanocluster transforms from paramagnetism to diamagnetism accordingly. The UV-vis absorption spectra remain the same in the process of single-electron loss or addition. Nuclear magnetic resonance (NMR) is applied to probe the charge and magnetic states of Au133(TBBT)52, and the chemical shifts of 52 surface TBBT ligands are found to be affected by the spin in the gold core. The NMR spectrum of Au133(TBBT)52 shows a 13-fold splitting with 4-fold degeneracy of 52 TBBT ligands, which are correlated to the quasi-D2 symmetry of the ligand shell. Overall, this work provides important insights into the electronic structure of Au133(TBBT)52 by combining EPR, optical and NMR studies, which will pave the way for further understanding of the transition behavior in metal nanoclusters.
Collapse
Affiliation(s)
- Chenjie Zeng
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Andrew Weitz
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Gayathri Withers
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Tatsuya Higaki
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Shuo Zhao
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Yuxiang Chen
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Roberto R Gil
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Michael Hendrich
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| | - Rongchao Jin
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Ave , Pittsburgh , PA , USA . ;
| |
Collapse
|