1
|
Changala PB, McCarthy MC. Rotational Spectrum of the Phenoxy Radical. J Phys Chem Lett 2024:5063-5069. [PMID: 38701387 DOI: 10.1021/acs.jpclett.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
We report the hyperfine-resolved rotational spectrum of the gas-phase phenoxy radical in the 8-25 GHz frequency range using cavity Fourier transform microwave spectroscopy. A complete assignment of its complex but well-resolved fine and hyperfine splittings yielded a precisely determined set of rotational constants, spin-rotation parameters, and nuclear hyperfine coupling constants. These results are interpreted with support from high-level quantum chemical calculations to gain detailed insight into the distribution of the unpaired π electron in this prototypical resonance-stabilized radical. The accurate laboratory rest frequencies enable studies of the chemistry of phenoxy in both the laboratory and space. The prospects of extending the present experimental and theoretical techniques to investigate the rotational spectra of isotopic variants and structural isomers of phenoxy and other important gas-phase radical intermediates that are yet undetected at radio wavelengths are discussed.
Collapse
Affiliation(s)
- P Bryan Changala
- Center for Astrophysics | Harvard & Smithsonian Cambridge, Massachusetts 02138, United States
| | - Michael C McCarthy
- Center for Astrophysics | Harvard & Smithsonian Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Borengasser Q, Hager T, Kanaherarachchi A, Troya D, Broderick BM. Conformer-Specific Desorption in Propanol Ices Probed by Chirped-Pulse Millimeter-Wave Rotational Spectroscopy. J Phys Chem Lett 2023:6550-6555. [PMID: 37450900 DOI: 10.1021/acs.jpclett.3c01468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
We present a new technique for the detection of molecules desorbed from an ice surface using broad-band millimeter-wave rotational spectroscopy. The approach permits interrogation of molecules that have undergone the slow warmup process of temperature-programmed desorption (TPD), analogous to the warmup phase of icy grains in the interstellar medium as they approach the central protostar. The detection is conformer- and isomer-specific and quantitative, as afforded by chirped-pulse rotational spectroscopy. To achieve this, we combine ice TPD with buffer gas cooling, followed by detection in the millimeter-wave regime. In this report we examine the TPD profiles of n- and i-propanol, the former of which may be in five different conformational isomeric forms, and which display distinct desorption profiles. The limited conformational isomerization and temperature-dependent relative yields of n-propanol conformers observed show that the desorption is highly conformer-specific.
Collapse
Affiliation(s)
- Quentin Borengasser
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Travis Hager
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Anudha Kanaherarachchi
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Diego Troya
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bernadette M Broderick
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
3
|
Satterthwaite L, Koumarianou G, Carroll PB, Sedlik RJ, Wang I, McCarthy MC, Patterson D. Low-Temperature Gas-Phase Kinetics of Ethanol-Methanol Heterodimer Formation. J Phys Chem A 2023; 127:4096-4102. [PMID: 37119198 PMCID: PMC10184117 DOI: 10.1021/acs.jpca.3c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The structures of gas-phase noncovalently bound clusters have long been studied in supersonic expansions. This method of study, while providing a wealth of information about the nature of noncovalent bonds, precludes observation of the formation of the cluster, as the clusters form just after the orifice of the pulsed valve. Here, we directly observe formation of ethanol-methanol dimers via microwave spectroscopy in a controlled cryogenic environment. Time profiles of the concentration of reagents in the cell yielded gas-phase reaction rate constants of kMe-g = (2.8 ± 1.4) × 10-13 cm3 molecule-1 s-1 and kMe-t = (1.6 ± 0.8) × 10-13 cm3 molecule-1 s-1 for the pseudo-second-order ethanol-methanol dimerization reaction at 8 K. The relaxation cross section between the gauche and trans conformers of ethanol was also measured using the same technique. In addition, thermodynamic relaxation between conformers of ethanol over time allowed for selection of conformer stoichiometry in the ethanol-methanol dimerization reaction, but no change in the ratio of dimer conformers was observed with changing ethanol monomer stoichiometry.
Collapse
Affiliation(s)
- Lincoln Satterthwaite
- Department of Chemistry and Biochemistry, Building 232, University of California, Santa Barbara, California 93106, United States
| | - Greta Koumarianou
- Department of Chemistry and Biochemistry, Building 232, University of California, Santa Barbara, California 93106, United States
| | - P Brandon Carroll
- Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, Massachusetts 02138, United States
| | - Robert J Sedlik
- Physics Department, Broida Hall, University of California, Santa Barbara, California 93106, United States
| | - Irene Wang
- Physics Department, Broida Hall, University of California, Santa Barbara, California 93106, United States
| | - Michael C McCarthy
- Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, Massachusetts 02138, United States
| | - David Patterson
- Physics Department, Broida Hall, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
4
|
Absolute frequency metrology of buffer-gas-cooled molecular spectra at 1 kHz accuracy level. Nat Commun 2022; 13:7016. [DOI: 10.1038/s41467-022-34758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractBy reducing both the internal and translational temperature of any species down to a few kelvins, the buffer-gas-cooling (BGC) technique has the potential to dramatically improve the quality of ro-vibrational molecular spectra, thus offering unique opportunities for transition frequency measurements with unprecedented accuracy. However, the difficulty in integrating metrological-grade spectroscopic tools into bulky cryogenic equipment has hitherto prevented from approaching the kHz level even in the best cases. Here, we overcome this drawback by an original opto-mechanical scheme which, effectively coupling a Lamb-dip saturated-absorption cavity ring-down spectrometer to a BGC source, allows us to determine the absolute frequency of the acetylene (ν1 + ν3) R(1)e transition at 6561.0941 cm−1 with a fractional uncertainty as low as 6 × 10−12. By improving the previous record with buffer-gas-cooled molecules by one order of magnitude, our approach paves the way for a number of ultra-precise low-temperature spectroscopic studies, aimed at both fundamental Physics tests and optimized laser cooling strategies.
Collapse
|
5
|
Aslani S, Armstrong DW. High information spectroscopic detection techniques for gas chromatography. J Chromatogr A 2022; 1676:463255. [PMID: 35797858 DOI: 10.1016/j.chroma.2022.463255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 01/14/2023]
Abstract
Gas chromatography has always been a simple and widely used technique for the separation of volatile compounds and their quantitation. However, the common detectors used with this technique are mostly universal and do not provide any specific qualitative information. There have been some attempts to combine the separation power of GC with the qualitative capabilities of "high-information" spectroscopic techniques including infrared spectroscopy, nuclear magnetic resonance spectroscopy, molecular rotational resonance spectroscopy, and vacuum ultraviolet spectroscopy. Some of these hyphenations have proven to be quite successful while others were less so. The history of such attempts, up to the most recent studies in this area, are discussed. Most recently, the hyphenation of GC with molecular rotational resonance spectroscopy which provides promising results and is a newly developed technique is reviewed and compared to previous high-information spectroscopic detection approaches. The history, description and features of each method along with their applications and challenges are discussed.
Collapse
Affiliation(s)
- Saba Aslani
- Department of Chemistry and Biochemistry, University of Arlington, 700 Planetarium Place, Arlington, TX 76019, United States
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Arlington, 700 Planetarium Place, Arlington, TX 76019, United States.
| |
Collapse
|
6
|
Koumarianou G, Wang I, Satterthwaite L, Patterson D. Assignment-free chirality detection in unknown samples via microwave three-wave mixing. Commun Chem 2022; 5:31. [PMID: 36697786 PMCID: PMC9814651 DOI: 10.1038/s42004-022-00641-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/03/2022] [Indexed: 01/28/2023] Open
Abstract
Straightforward identification of chiral molecules in multi-component mixtures of unknown composition is extremely challenging. Current spectrometric and chromatographic methods cannot unambiguously identify components while the state of the art spectroscopic methods are limited by the difficult and time-consuming task of spectral assignment. Here, we introduce a highly sensitive generalized version of microwave three-wave mixing that uses broad-spectrum fields to detect chiral molecules in enantiomeric excess without any prior chemical knowledge of the sample. This method does not require spectral assignment as a necessary step to extract information out of a spectrum. We demonstrate our method by recording three-wave mixing spectra of multi-component samples that provide direct evidence of enantiomeric excess. Our method opens up new capabilities in ultrasensitive phase-coherent spectroscopic detection that can be applied for chiral detection in real-life mixtures, raw products of chemical reactions and difficult to assign novel exotic species.
Collapse
Affiliation(s)
- Greta Koumarianou
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - Irene Wang
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Lincoln Satterthwaite
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - David Patterson
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
7
|
Gurusinghe RM, Dias N, Krueger R, Suits AG. Uniform supersonic flow sampling for detection by chirped-pulse rotational spectroscopy. J Chem Phys 2022; 156:014202. [PMID: 34998338 DOI: 10.1063/5.0073527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy is a powerful near-universal detection method finding application in many areas. We have previously coupled it with supersonic flows (CPUF) to obtain product branching in reaction and photodissociation. Because chirped-pulse microwave detection requires monitoring the free induction decay on the timescale of microseconds, it cannot be employed with good sensitivity at the high densities achieved in some uniform supersonic flows. For application to low-temperature kinetics studies, a truly uniform flow is required to obtain reliable rate measurements and enjoy all the advantages that CP-FTMW has to offer. To this end, we present a new setup that combines sampling of uniform supersonic flows using an airfoil-shaped sampling device with chirped-pulse mmW detection. Density and temperature variations in the airfoil-sampled uniform flow were revealed using time-dependent rotational spectroscopy of pyridine and vinyl cyanide photoproducts, highlighting the use of UV photodissociation as a sensitive diagnostic tool for uniform flows. The performance of the new airfoil-equipped CPUF rotational spectrometer was validated using kinetics measurements of the CN + C2H6 reaction at 50 K with detection of the HCN product. Issues relating to product detection by rotational spectroscopy and airfoil sampling are discussed. We show that airfoil sampling enables direct measurements of low temperature reaction kinetics on a microsecond timescale, while rotational spectroscopic detection enables highly specific simultaneous detection of reactants and products.
Collapse
Affiliation(s)
- Ranil M Gurusinghe
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Nureshan Dias
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Ritter Krueger
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
8
|
Sub-Hz Differential Rotational Spectroscopy of Enantiomers. Symmetry (Basel) 2021. [DOI: 10.3390/sym14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We demonstrate for the first time high-precision differential microwave spectroscopy, achieving sub-Hz precision by coupling a cryogenic buffer gas cell with a tunable microwave Fabry–Perot cavity. We report statistically limited sub-Hz precision of (0.08 ± 0.72) Hz, observed between enantiopure samples of (R)-1,2-propanediol and (S)-1,2-propanediol at frequencies near 15 GHz. We confirm highly repeatable spectroscopic measurements compared to traditional pulsed-jet methods, opening up new capabilities in probing subtle molecular structural effects at the 10−10 level and providing a platform for exploring sources of systematic error in parity-violation searches. We discuss dominant systematic effects at this level and propose possible extensions of the technique for higher precision.
Collapse
|
9
|
Wahab MF, Aslani S, Mikhonin AV, Neill JL, Armstrong DW. Enhancing Sensitivity for High-Selectivity Gas Chromatography-Molecular Rotational Resonance Spectroscopy. Anal Chem 2021; 93:15525-15533. [PMID: 34748700 DOI: 10.1021/acs.analchem.1c03710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A next-generation gas chromatograph-molecular rotational resonance (MRR) spectrometer (GC-MRR) with instrumental improvements and higher sensitivity is described. MRR serves as a structural information-rich detector for GC with extremely narrow linewidths and capabilities surpassing 1H nuclear magnetic resonance/Fourier transform infrared spectroscopy/mass spectrometry (MS) while offering unparalleled specificity in regard to a molecule's three-dimensional structure. With a Fabry-Pérot cavity and a supersonic jet incorporated into a GC-MRR, dramatic improvements in sensitivity for molecules up to 244 Da were achieved in the microwave region compared to the only prior work, which demonstrated the GC-MRR idea for the first time with millimeter waves. The supersonic jet cools the analytes to ∼2 K, resulting in a limited number of molecular rotational and vibrational levels and enabling us to obtain stronger GC-MRR signals. This has allowed the limits of detection of the GC-MRR to be comparable to a GC thermal conductivity detector with an optimized choice of gases. The performance of this GC-MRR system is reported for a range of molecules with permanent dipole moments, including alcohols, nitrogen heterocyclics, halogenated compounds, dioxins, and nitro compounds in the molecular mass range of 46-244 Da. The lowest amount of any substance yet detected by MRR in terms of mass is reported in this work. A theoretically unexpected finding is reported for the first time about the effect of the GC carrier gas (He, Ne, and N2) on the sensitivity of the analysis in the presence of the gas driving the supersonic jet (He, Ne, and N2) in the GC-MRR. Finally, the idea of total molecule monitoring in the GC-MRR analogous to selected ion monitoring in GC-MS is illustrated. Structural isomers and isotopologues of bromobutanes and bromonitrobenzenes are used to demonstrate this concept.
Collapse
Affiliation(s)
- M Farooq Wahab
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Saba Aslani
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Alexander V Mikhonin
- BrightSpec, Inc., 770 Harris St., Suite 104b, Charlottesville, Virginia 22903, United States
| | - Justin L Neill
- BrightSpec, Inc., 770 Harris St., Suite 104b, Charlottesville, Virginia 22903, United States
| | - Daniel W Armstrong
- Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
- AZYP, LLC, Arlington, Texas 76012, United States
| |
Collapse
|
10
|
Johansen SL, Xu Z, Westerfield JH, Wannenmacher AC, Crabtree KN. Coupled Cluster Characterization of 1-, 2-, and 3-Pyrrolyl: Parameters for Vibrational and Rotational Spectroscopy. J Phys Chem A 2021; 125:1257-1268. [PMID: 33502858 DOI: 10.1021/acs.jpca.0c09833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyrrolyl (C4H4N) is a nitrogen-containing aromatic radical that is a derivative of pyrrole (C4H5N) and is an important intermediate in the combustion of biomass. It is also relevant for chemistry in Titan's atmosphere and may be present in the interstellar medium. The lowest-energy isomer, 1-pyrrolyl, has been involved in many experimental and theoretical studies of the N-H photodissociation of pyrrole, yet it has only been directly spectroscopically detected via electron paramagnetic resonance and through the photoelectron spectrum of the pyrrolide anion, yielding three vibrational frequencies. No direct measurements of 2- or 3-pyrrolyl have been made, and little information is known from theoretical calculations beyond their relative energies. Here, we present an ab initio quantum chemical characterization of the three pyrrolyl isomers at the CCSD(T) level of theory in their ground electronic states, with an emphasis on spectroscopic parameters relevant for vibrational and rotational spectroscopy. Equilibrium geometries were optimized at the CCSD(T)/cc-pwCVTZ level of theory, and the quadratic, cubic, and partial quartic force constants were evaluated at CCSD(T)/ANO0 for analysis using second-order vibrational perturbation theory to obtain harmonic and anharmonic vibrational frequencies. In addition, zero-point-corrected rotational constants, electronic spin-rotation tensors, and nuclear hyperfine tensors are calculated for rotational spectroscopy. Our computed structures and energies agree well with earlier density functional theory calculations, and spectroscopic parameters for 1-pyrrolyl are compared with the limited existing experimental data. Finally, we discuss strategies for detecting these radicals using rotational and vibrational spectroscopy on the basis of the calculated spectroscopic constants.
Collapse
Affiliation(s)
- Sommer L Johansen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Zhongxing Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - J H Westerfield
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Anna C Wannenmacher
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Kyle N Crabtree
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
11
|
Gurusinghe RM, Dias N, Broderick BM. Buffer gas cooling for sensitive rotational spectroscopy of ice chemistry: A proposal. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Affiliation(s)
- Carlos Cabezas
- Instituto de Física Fundamental (IFF-CSIC), Group of Molecular Astrophysics, Madrid, Spain
| | | | - Yasuki Endo
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
13
|
Porterfield JP, Westerfield JH, Satterthwaite L, Patterson D, Changala PB, Baraban JH, McCarthy MC. Rotational Characterization of the Elusive gauche-Isoprene. J Phys Chem Lett 2019; 10:1981-1985. [PMID: 30897904 DOI: 10.1021/acs.jpclett.9b00411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isoprene (2-methyl-1,3-butadiene) is highly abundant in the atmosphere, second only to methane in hydrocarbon emissions. In contrast to the most stable trans rotamer, structural characterization of gauche-isoprene has proven challenging: it is weakly polar, present at the level of only a few percent at room temperature, and structurally complex due to both torsional and methyl tunneling motions. gauche-Isoprene has been observed by two distinct but complementary experimental approaches: chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy coupled with cryogenic buffer gas cooling, and cavity-enhanced FTMW spectroscopy with a pulsed discharge source. Thermal enhancement of the gauche population (from 1.7% to 10.3%) was observed in the cryogenic buffer gas cell when the sample was preheated from 300 to 450 K, demonstrating that high-energy rotamers can be efficiently isolated under our experimental conditions. Rotational parameters for the inversion states (0+/0-) have been determined for the first time, aided by calculations at increasing levels of theoretical sophistication. From this combined analysis, the inversion splitting Δ E and the Fbc Coriolis coupling constant between the two inversion states have been derived.
Collapse
Affiliation(s)
- Jessica P Porterfield
- Harvard-Smithsonian Center for Astrophysics , Cambridge , Massachusetts 02138 , United States
| | - J H Westerfield
- Department of Chemistry , New College of Florida , Sarasota , Florida 34243 , United States
| | - Lincoln Satterthwaite
- Department of Physics , University of California , Santa Barbara , California 93106 , United States
| | - David Patterson
- Department of Physics , University of California , Santa Barbara , California 93106 , United States
| | - P Bryan Changala
- Department of Physics , University of Colorado , Boulder , Colorado 80302 , United States
| | - Joshua H Baraban
- Department of Chemistry , Ben-Gurion University of the Negev , Beersheva 84105 , Israel
| | - Michael C McCarthy
- Harvard-Smithsonian Center for Astrophysics , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|