1
|
Majumder R, Sokolov AY. Consistent Second-Order Treatment of Spin-Orbit Coupling and Dynamic Correlation in Quasidegenerate N-Electron Valence Perturbation Theory. J Chem Theory Comput 2024; 20:4676-4688. [PMID: 38795071 DOI: 10.1021/acs.jctc.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
We present a formulation and implementation of second-order quasidegenerate N-electron valence perturbation theory (QDNEVPT2) that provides a balanced and accurate description of spin-orbit coupling and dynamic correlation effects in multiconfigurational electronic states. In our approach, the energies and wave functions of electronic states are computed by treating electron repulsion and spin-orbit coupling operators as equal perturbations to the nonrelativistic complete active-space wave functions, and their contributions are incorporated fully up to the second order. The spin-orbit effects are described using the Breit-Pauli (BP) or exact two-component Douglas-Kroll-Hess (DKH) Hamiltonians within spin-orbit mean-field approximation. The resulting second-order methods (BP2- and DKH2-QDNEVPT2) are capable of treating spin-orbit coupling effects in nearly degenerate electronic states by diagonalizing an effective Hamiltonian expanded in a compact non-relativistic basis. For a variety of atoms and small molecules across the entire periodic table, we demonstrate that DKH2-QDNEVPT2 is competitive in accuracy with variational two-component relativistic theories. BP2-QDNEVPT2 shows high accuracy for the second- and third-period elements, but its performance deteriorates for heavier atoms and molecules. We also consider the first-order spin-orbit QDNEVPT2 approximations (BP1- and DKH1-QDNEVPT2), among which DKH1-QDNEVPT2 is reliable but less accurate than DKH2-QDNEVPT2. Both DKH1- and DKH2-QDNEVPT2 hold promise as efficient and accurate electronic structure methods for treating electron correlation and spin-orbit coupling in a variety of applications.
Collapse
Affiliation(s)
- Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Gaba NP, de Moura CEV, Majumder R, Sokolov AY. Simulating transient X-ray photoelectron spectra of Fe(CO) 5 and its photodissociation products with multireference algebraic diagrammatic construction theory. Phys Chem Chem Phys 2024; 26:15927-15938. [PMID: 38805029 DOI: 10.1039/d4cp00801d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Accurate simulations of transient X-ray photoelectron spectra (XPS) provide unique opportunities to bridge the gap between theory and experiment in understanding the photoactivated dynamics in molecules and materials. However, simulating X-ray photoelectron spectra along a photochemical reaction pathway is challenging as it requires accurate description of electronic structure incorporating core-hole screening, orbital relaxation, electron correlation, and spin-orbit coupling in excited states or at nonequilibrium ground-state geometries. In this work, we employ the recently developed multireference algebraic diagrammatic construction theory (MR-ADC) to investigate the core-ionized states and X-ray photoelectron spectra of Fe(CO)5 and its photodissociation products (Fe(CO)4, Fe(CO)3) following excitation with 266 nm light. The simulated transient Fe 3p and CO 3σ XPS spectra incorporating spin-orbit coupling and high-order electron correlation effects are shown to be in a good agreement with the experimental measurements by Leitner et al. [J. Chem. Phys., 2018, 149, 044307]. Our calculations suggest that core-hole screening, spin-orbit coupling, and ligand-field splitting effects are similarly important in reproducing the experimentally observed chemical shifts in transient Fe 3p XPS spectra of iron carbonyl complexes. Our results also demonstrate that the MR-ADC methods can be very useful in interpreting the transient XPS spectra of transition metal compounds.
Collapse
Affiliation(s)
- Nicholas P Gaba
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Carlos E V de Moura
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| |
Collapse
|
3
|
Shumilov KD, Jenkins AJ, La Pierre HS, Vlaisavljevich B, Li X. Overdestabilization vs Overstabilization in the Theoretical Analysis of f-Orbital Covalency. J Am Chem Soc 2024; 146:12030-12039. [PMID: 38648269 DOI: 10.1021/jacs.4c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The complex nature of the f-orbital electronic structures and their interaction with the chemical environment pose significant computational challenges. Advanced computational techniques that variationally include scalar relativities and spin-orbit coupling directly at the molecular orbital level have been developed to address this complexity. Among these, variational relativistic multiconfigurational multireference methods stand out for their high accuracy and systematic improvement in studies of f-block complexes. Additionally, these advanced methods offer the potential for calibrating low-scaling electronic structure methods such as density functional theory. However, studies on the Cl K-edge X-ray absorption spectra of the [Ce(III)Cl6]3- and [Ce(IV)Cl6]2- complexes show that time-dependent density functional theory with approximate exchange-correlation kernels can lead to inaccuracies, resulting in an overstabilization of 4f orbitals and incorrect assessments of covalency. In contrast, approaches utilizing small active space wave function methods may understate the stability of these orbitals. The results herein demonstrate the need for large active space, multireference, and variational relativistic methods in studying f-block complexes.
Collapse
Affiliation(s)
- Kirill D Shumilov
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Henry S La Pierre
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Nuclear and Radiological Engineering and Medical Physics Program, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Liao C, Kasper JM, Jenkins AJ, Yang P, Batista ER, Frisch MJ, Li X. State Interaction Linear Response Time-Dependent Density Functional Theory with Perturbative Spin-Orbit Coupling: Benchmark and Perspectives. JACS AU 2023; 3:358-367. [PMID: 36873704 PMCID: PMC9975852 DOI: 10.1021/jacsau.2c00659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Spin-orbit coupling (SOC) is an important driving force in photochemistry. In this work, we develop a perturbative spin-orbit coupling method within the linear response time-dependent density function theory framework (TDDFT-SO). A full state interaction scheme, including singlet-triplet and triplet-triplet coupling, is introduced to describe not only the coupling between the ground and excited states, but also between excited states with all couplings between spin microstates. In addition, expressions to compute spectral oscillator strengths are presented. Scalar relativity is included variationally using the second-order Douglas-Kroll-Hess Hamiltonian, and the TDDFT-SO method is validated against variational SOC relativistic methods for atomic, diatomic, and transition metal complexes to determine the range of applicability and potential limitations. To demonstrate the robustness of TDDFT-SO for large-scale chemical systems, the UV-Vis spectrum of Au25(SR)18 - is computed and compared to experiment. Perspectives on the limitation, accuracy, and capability of perturbative TDDFT-SO are presented via analyses of benchmark calculations. Additionally, an open-source Python software package (PyTDDFT-SO) is developed and released to interface with the Gaussian 16 quantum chemistry software package to perform this calculation.
Collapse
Affiliation(s)
- Can Liao
- Department
of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Joseph M. Kasper
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Andrew J. Jenkins
- Department
of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Ping Yang
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Enrique R. Batista
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Michael J. Frisch
- Gaussian
Inc., 340 Quinnipiac Street, Bldg 40, Wallingford, Connecticut06492, United States
| | - Xiaosong Li
- Department
of Chemistry, University of Washington, Seattle, Washington98195, United States
| |
Collapse
|
5
|
Konecny L, Komorovsky S, Vicha J, Ruud K, Repisky M. Exact Two-Component TDDFT with Simple Two-Electron Picture-Change Corrections: X-ray Absorption Spectra Near L- and M-Edges of Four-Component Quality at Two-Component Cost. J Phys Chem A 2023; 127:1360-1376. [PMID: 36722848 PMCID: PMC9923756 DOI: 10.1021/acs.jpca.2c08307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/13/2023] [Indexed: 02/02/2023]
Abstract
X-ray absorption spectroscopy (XAS) has gained popularity in recent years as it probes matter with high spatial and elemental sensitivities. However, the theoretical modeling of XAS is a challenging task since XAS spectra feature a fine structure due to scalar (SC) and spin-orbit (SO) relativistic effects, in particular near L and M absorption edges. While full four-component (4c) calculations of XAS are nowadays feasible, there is still interest in developing approximate relativistic methods that enable XAS calculations at the two-component (2c) level while maintaining the accuracy of the parent 4c approach. In this article we present theoretical and numerical insights into two simple yet accurate 2c approaches based on an (extended) atomic mean-field exact two-component Hamiltonian framework, (e)amfX2C, for the calculation of XAS using linear eigenvalue and damped response time-dependent density functional theory (TDDFT). In contrast to the commonly used one-electron X2C (1eX2C) Hamiltonian, both amfX2C and eamfX2C account for the SC and SO two-electron and exchange-correlation picture-change (PC) effects that arise from the X2C transformation. As we demonstrate on L- and M-edge XAS spectra of transition metal and actinide compounds, the absence of PC corrections in the 1eX2C approximation results in a substantial overestimation of SO splittings, whereas (e)amfX2C Hamiltonians reproduce all essential spectral features such as shape, position, and SO splitting of the 4c references in excellent agreement, while offering significant computational savings. Therefore, the (e)amfX2C PC correction models presented here constitute reliable relativistic 2c quantum-chemical approaches for modeling XAS.
Collapse
Affiliation(s)
- Lukas Konecny
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037Tromsø, Norway
- Center
for Free Electron Laser Science, Max Planck
Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Stanislav Komorovsky
- Institute
of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536Bratislava, Slovakia
| | - Jan Vicha
- Centre
of Polymer Systems, University Institute,
Tomas Bata University in Zlín, CZ-76001Zlín, Czech Republic
| | - Kenneth Ruud
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037Tromsø, Norway
- Norwegian
Defence Research Establishment, P.O.
Box 25, 2027Kjeller, Norway
| | - Michal Repisky
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037Tromsø, Norway
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, SK-84215Bratislava, Slovakia
| |
Collapse
|
6
|
Majumder R, Sokolov AY. Simulating Spin-Orbit Coupling with Quasidegenerate N-Electron Valence Perturbation Theory. J Phys Chem A 2023; 127:546-559. [PMID: 36599072 DOI: 10.1021/acs.jpca.2c07952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We present the first implementation of spin-orbit coupling effects in fully internally contracted second-order quasidegenerate N-electron valence perturbation theory (SO-QDNEVPT2). The SO-QDNEVPT2 approach enables the computations of ground- and excited-state energies and oscillator strengths combining the description of static electron correlation with an efficient treatment of dynamic correlation and spin-orbit coupling. In addition to SO-QDNEVPT2 with the full description of one- and two-body spin-orbit interactions at the level of two-component Breit-Pauli Hamiltonian, our implementation also features a simplified approach that takes advantage of spin-orbit mean-field approximation (SOMF-QDNEVPT2). The accuracy of these methods is tested for the group 14 and 16 hydrides, 3d and 4d transition metal ions, and two actinide dioxides (neptunyl and plutonyl dications). The zero-field splittings of group 14 and 16 molecules computed using SO-QDNEVPT2 and SOMF-QDNEVPT2 are in good agreement with the available experimental data. For the 3d transition metal ions, the SO-QDNEVPT2 method is significantly more accurate than SOMF-QDNEVPT2, while no substantial difference in the performance of two methods is observed for the 4d ions. Finally, we demonstrate that for the actinide dioxides the results of SO-QDNEVPT2 and SOMF-QDNEVPT2 are in good agreement with the data from previous theoretical studies of these systems. Overall, our results demonstrate that SO-QDNEVPT2 and SOMF-QDNEVPT2 are promising multireference methods for treating spin-orbit coupling with a relatively low computational cost.
Collapse
Affiliation(s)
- Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
7
|
Knecht S, Repisky M, Jensen HJA, Saue T. Exact two-component Hamiltonians for relativistic quantum chemistry: Two-electron picture-change corrections made simple. J Chem Phys 2022; 157:114106. [PMID: 36137811 DOI: 10.1063/5.0095112] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Based on self-consistent field (SCF) atomic mean-field (amf) quantities, we present two simple yet computationally efficient and numerically accurate matrix-algebraic approaches to correct both scalar-relativistic and spin-orbit two-electron picture-change effects (PCEs) arising within an exact two-component (X2C) Hamiltonian framework. Both approaches, dubbed amfX2C and e(xtended)amfX2C, allow us to uniquely tailor PCE corrections to mean-field models, viz. Hartree-Fock or Kohn-Sham DFT, in the latter case also avoiding the need for a point-wise calculation of exchange-correlation PCE corrections. We assess the numerical performance of these PCE correction models on spinor energies of group 18 (closed-shell) and group 16 (open-shell) diatomic molecules, achieving a consistent ≈10-5 Hartree accuracy compared to reference four-component data. Additional tests include SCF calculations of molecular properties such as absolute contact density and contact density shifts in copernicium fluoride compounds (CnFn, n = 2,4,6), as well as equation-of-motion coupled-cluster calculations of x-ray core-ionization energies of 5d- and 6d-containing molecules, where we observe an excellent agreement with reference data. To conclude, we are confident that our (e)amfX2C PCE correction models constitute a fundamental milestone toward a universal and reliable relativistic two-component quantum-chemical approach, maintaining the accuracy of the parent four-component one at a fraction of its computational cost.
Collapse
Affiliation(s)
- Stefan Knecht
- Algorithmiq Ltd, Kanavakatu 3C, FI-00160 Helsinki, Finland
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Trond Saue
- Laboratoire de Chimie et Physique Quantiques (CNRS UMR 5626), Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| |
Collapse
|
8
|
Hoyer CE, Hu H, Lu L, Knecht S, Li X. Relativistic Kramers-Unrestricted Exact-Two-Component Density Matrix Renormalization Group. J Phys Chem A 2022; 126:5011-5020. [PMID: 35881436 DOI: 10.1021/acs.jpca.2c02150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work we develop a variational relativistic density matrix renormalization group (DMRG) approach within the exact-two-component (X2C) framework (X2C-DMRG), using spinor orbitals optimized with the two-component relativistic complete active space self-consistent field. We investigate fine-structure splittings of p- (Ga, In, Tl) and d-block (Sc, Y, La) atoms and excitation energies of monohydride molecules (GeH, SnH, and TlH) with X2C-DMRG calculations using an all-electron relativistic Hamiltonian in a Kramers-unrestricted basis. We find that X2C-DMRG yields accurate 2P and 2D splittings compared to multireference configuration interaction with singles and doubles (MRCISD). We also investigated the degree of symmetry breaking in the atomic multiplets and convergence of electron correlation in the total energies. Symmetry breaking can be large in some cases (∼30 meV); however, increasing the number of renormalized block states m for the DMRG optimization recovers the symmetry breaking by several orders of magnitude. Encouragingly, we find the convergence of electron correlation to be close to MRCISDTQ5 quality. Relativistic X2C-DMRG approaches are important for cases where spin-orbit coupling is significant and the underlying reference wave function requires a large determinantal space. We are able to obtain quantitatively correct fine-structure splittings for systems up to 1019 number of determinants with traditional CI approaches, which are currently unfeasible to converge for the field.
Collapse
Affiliation(s)
- Chad E Hoyer
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hang Hu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lixin Lu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Stefan Knecht
- Algorithmiq Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland.,Abteilung SHE Chemie, GSI Helmholtzzentrum für Schwerionenforschung, DE-64291 Darmstadt, Germany.,Department Chemie, Johannes-Gutenberg Universität Mainz, DE-55128 Mainz, Germany
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
Ye L, Wang H, Zhang Y, Liu W. Self-Adaptive Real-Time Time-Dependent Density Functional Theory for X-ray Absorptions. J Chem Phys 2022; 157:074106. [DOI: 10.1063/5.0106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Real-time time-dependent density functional theory (RT-TDDFT) can in principle access the whole absorption spectrum of a many-electron system exposed to a narrow pulse. However, this requires an accurate and efficient propagator for the numerical integration of the time-dependent Kohn-Sham equation. While a low-order time propagator is already sufficient for the low-lying valence absorption spectra, it is no longer the case for the X-ray absorption spectra (XAS) of systems composed even only of light elements, for which the use of a high-order propagator is indispensable. It is then crucial to choose a largest possible time step and a shortest possible simulation time, so as to minimize the computational cost. To this end, we propose here a robust AutoPST approach to determine automatically (Auto) the propagator (P), step (S), and time (T) for relativistic RT-TDDFT simulations of XAS.
Collapse
Affiliation(s)
| | - Hao Wang
- Shandong University - Qingdao Campus, China
| | | | - Wenjian Liu
- Qingdao Institue for Theoretical and Computational Sciences, Shandong University, China
| |
Collapse
|
10
|
Nascimento DR, Govind N. Computational approaches for XANES, VtC-XES, and RIXS using linear-response time-dependent density functional theory based methods. Phys Chem Chem Phys 2022; 24:14680-14691. [PMID: 35699090 DOI: 10.1039/d2cp01132h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The emergence of state-of-the-art X-ray light sources has paved the way for novel spectroscopies that take advantage of their atomic specificity to shed light on fundamental physical, chemical, and biological processes both in the static and time domains. The success of these experiments hinges on the ability to interpret and predict core-level spectra, which has opened avenues for theory to play a key role. Over the last two decades, linear-response time-dependent density functional theory (LR-TDDFT), despite various theoretical challenges, has become a computationally attractive and versatile framework to study excited-state spectra including X-ray spectroscopies. In this context, we focus our discussion on LR-TDDFT approaches for the computation of X-ray Near-Edge Structure (XANES), Valence-to-Core X-ray Emission (VtC-XES), and Resonant Inelastic X-ray Scattering (RIXS) spectroscopies in molecular systems with an emphasis on Gaussian basis set implementations. We illustrate these approaches with applications and provide a brief outlook of possible new directions.
Collapse
Affiliation(s)
- Daniel R Nascimento
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA.
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| |
Collapse
|
11
|
Grofe A, Li X. Relativistic nonorthogonal configuration interaction: application to L 2,3-edge X-ray spectroscopy. Phys Chem Chem Phys 2022; 24:10745-10756. [PMID: 35451435 DOI: 10.1039/d2cp01127a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this article, we develop a relativistic exact-two-component nonorthogonal configuration interaction (X2C-NOCI) for computing L-edge X-ray spectra. This article to our knowledge is the first time NOCI has been used for relativistic wave functions. A set of molecular complexes, including SF6, SiCl4 and [FeCl6]3-, are used to demonstrate the accuracy and computational scaling of the X2C-NOCI method. Our results suggest that X2C-NOCI is able to satisfactorily capture the main features of the L2,3-edge X-ray absorption spectra. Excitations from the core require a large amount of orbital relaxation to yield reasonable energies and X2C-NOCI allows us to treat orbital optimization explicitly. However, the cost of computing the nonorthogonal coupling is higher than in conventional CI. Here, we propose an improved integral screening using overlap-scaled density combined with a continuous measure of the generalized Slater-Condon rules that allows us to estimate if an element is zero before attempting a two-electron integral contraction.
Collapse
Affiliation(s)
- Adam Grofe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
12
|
Cunha LA, Hait D, Kang R, Mao Y, Head-Gordon M. Relativistic Orbital-Optimized Density Functional Theory for Accurate Core-Level Spectroscopy. J Phys Chem Lett 2022; 13:3438-3449. [PMID: 35412838 DOI: 10.1021/acs.jpclett.2c00578] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Core-level spectra of 1s electrons of elements heavier than Ne show significant relativistic effects. We combine advances in orbital-optimized density functional theory (OO-DFT) with the spin-free exact two-component (X2C) model for scalar relativistic effects to study K-edge spectra of third period elements. OO-DFT/X2C is found to be quite accurate at predicting energies, yielding a ∼0.5 eV root-mean-square error versus experiment with the modern SCAN (and related) functionals. This marks a significant improvement over the >50 eV deviations that are typical for the popular time-dependent DFT (TDDFT) approach. Consequently, experimental spectra are quite well reproduced by OO-DFT/X2C, sans empirical shifts for alignment. OO-DFT/X2C combines high accuracy with ground state DFT cost and is thus a promising route for computing core-level spectra of third period elements. We also explored K and L edges of 3d transition metals to identify limitations of the OO-DFT/X2C approach in modeling the spectra of heavier atoms.
Collapse
Affiliation(s)
- Leonardo A Cunha
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Richard Kang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Sharma P, Jenkins AJ, Scalmani G, Frisch MJ, Truhlar DG, Gagliardi L, Li X. Exact-Two-Component Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2022; 18:2947-2954. [PMID: 35384665 DOI: 10.1021/acs.jctc.2c00062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecules containing late-row elements exhibit large relativistic effects. To account for both relativistic effects and electron correlation in a computationally inexpensive way, we derived a formulation of multiconfiguration pair-density functional theory with the relativistic exact-two-component Hamiltonian (X2C-MC-PDFT). In this new method, relativistic effects are included during variational optimization of a reference wave function by exact-two-component complete active-space self-consistent-field (X2C-CASSCF) theory, followed by an energy evaluation using pair-density functional theory. Benchmark studies of excited-state and ground-state fine-structure splitting of atomic species show that X2C-MC-PDFT can significantly improve the X2C-CASSCF results by introducing additional state-specific electron correlation.
Collapse
Affiliation(s)
- Prachi Sharma
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Giovanni Scalmani
- Gaussian Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Michael J Frisch
- Gaussian Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Kasper JM, Li X, Kozimor SA, Batista ER, Yang P. Relativistic Effects in Modeling the Ligand K-Edge X-ray Absorption Near-Edge Structure of Uranium Complexes. J Chem Theory Comput 2022; 18:2171-2179. [PMID: 35274960 DOI: 10.1021/acs.jctc.1c00851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accurate modeling of the complex electronic structure of actinide complexes requires full inclusion of relativistic effects. In this study, we examine the effect of explicit inclusion of spin-orbit coupling (SOC) versus scalar relativistic effects on the predicted spectra for heavy-element complexes. In this study, we employ a relativistic two-component Hamiltonian in the X2C form with all of the electrons in the system being considered explicitly to compare and contrast with previous studies that included the relativistic effects by means of relativistic effective core potentials (RECPs). A few uranium complexes are chosen as model systems. Comparison of the computed Cl K-edge X-ray absorption spectra with experimental data shows significantly improved agreement when a variational relativistic treatment of SOC is performed. In particular, we note the importance of SOC terms to obtain not only correct transition energies but also correct intensities for these heavy-element complexes because of the redistribution of ligand bonding character among the valence MOs. While RECPs generally agree well with all-electron scalar relativistic calculations, there are some differences in the predicted spectra of open-shell systems. These methods are still suitable for broad application to analyze the qualitative nature of transitions in X-ray absorption spectra, but caution is recommended for quantitative analysis, as SOC can be non-negligible for both open- and closed-shell heavy-element systems.
Collapse
Affiliation(s)
- Joseph M Kasper
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Stosh A Kozimor
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
15
|
Yao Y, Golze D, Rinke P, Blum V, Kanai Y. All-Electron BSE@ GW Method for K-Edge Core Electron Excitation Energies. J Chem Theory Comput 2022; 18:1569-1583. [PMID: 35138865 DOI: 10.1021/acs.jctc.1c01180] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present an accurate computational approach to calculate absolute K-edge core electron excitation energies as measured by X-ray absorption spectroscopy. Our approach employs an all-electron Bethe-Salpeter equation (BSE) formalism based on GW quasiparticle energies (BSE@GW) using numeric atom-centered orbitals (NAOs). The BSE@GW method has become an increasingly popular method for the computation of neutral valence excitation energies of molecules. However, it was so far not applied to molecular K-edge excitation energies. We discuss the influence of different numerical approximations on the BSE@GW calculation and employ in our final setup (i) exact numeric algorithms for the frequency integration of the GW self-energy, (ii) G0W0 and BSE starting points with ∼50% of exact exchange, (iii) the Tamm-Dancoff approximation and (iv) relativistic corrections. We study the basis set dependence and convergence with common Gaussian-type orbital and NAO basis sets. We identify the importance of additional spatially confined basis functions as well as of diffuse augmenting basis functions. The accuracy of our BSE@GW method is assessed for a benchmark set of small organic molecules, previously used for benchmarking the equation-of-motion coupled cluster method [Peng et al., J. Chem. Theory Comput., 2015, 11, 4146], as well as the medium-sized dibenzothiophene (DBT) molecule. Our BSE@GW results for absolute excitation energies are in excellent agreement with the experiment, with a mean average error of only 0.63 eV for the benchmark set and with errors <1 eV for the DBT molecule.
Collapse
Affiliation(s)
- Yi Yao
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dorothea Golze
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.,Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
| | - Patrick Rinke
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
| | | | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
16
|
Konecny L, Vicha J, Komorovsky S, Ruud K, Repisky M. Accurate X-ray Absorption Spectra near L- and M-Edges from Relativistic Four-Component Damped Response Time-Dependent Density Functional Theory. Inorg Chem 2022; 61:830-846. [PMID: 34958215 PMCID: PMC8767545 DOI: 10.1021/acs.inorgchem.1c02412] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Indexed: 11/27/2022]
Abstract
The simulation of X-ray absorption spectra requires both scalar and spin-orbit (SO) relativistic effects to be taken into account, particularly near L- and M-edges where the SO splitting of core p and d orbitals dominates. Four-component Dirac-Coulomb Hamiltonian-based linear damped response time-dependent density functional theory (4c-DR-TDDFT) calculates spectra directly for a selected frequency region while including the relativistic effects variationally, making the method well suited for X-ray applications. In this work, we show that accurate X-ray absorption spectra near L2,3- and M4,5-edges of closed-shell transition metal and actinide compounds with different central atoms, ligands, and oxidation states can be obtained by means of 4c-DR-TDDFT. While the main absorption lines do not change noticeably with the basis set and geometry, the exchange-correlation functional has a strong influence with hybrid functionals performing the best. The energy shift compared to the experiment is shown to depend linearly on the amount of Hartee-Fock exchange with the optimal value being 60% for spectral regions above 1000 eV, providing relative errors below 0.2% and 2% for edge energies and SO splittings, respectively. Finally, the methodology calibrated in this work is used to reproduce the experimental L2,3-edge X-ray absorption spectra of [RuCl2(DMSO)2(Im)2] and [WCl4(PMePh2)2], and resolve the broad bands into separated lines, allowing an interpretation based on ligand field theory and double point groups. These results support 4c-DR-TDDFT as a reliable method for calculating and analyzing X-ray absorption spectra of chemically interesting systems, advance the accuracy of state-of-the art relativistic DFT approaches, and provide a reference for benchmarking more approximate techniques.
Collapse
Affiliation(s)
- Lukas Konecny
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø − The Arctic University
of Norway, 9037 Tromsø, Norway
| | - Jan Vicha
- Centre
of Polymer Systems, Tomas Bata University, tř. Tomáše
Bati 5678, 760 01 Zlín, Czech Republic
| | - Stanislav Komorovsky
- Institute
of Inorganic Chemistry, Slovak Academy of
Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Kenneth Ruud
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø − The Arctic University
of Norway, 9037 Tromsø, Norway
| | - Michal Repisky
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø − The Arctic University
of Norway, 9037 Tromsø, Norway
| |
Collapse
|
17
|
Grofe A, Gao J, Li X. Exact-two-component block-localized wave function: A simple scheme for the automatic computation of relativistic ΔSCF. J Chem Phys 2021; 155:014103. [PMID: 34241404 DOI: 10.1063/5.0054227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Block-localized wave function is a useful method for optimizing constrained determinants. In this article, we extend the generalized block-localized wave function technique to a relativistic two-component framework. Optimization of excited state determinants for two-component wave functions presents a unique challenge because the excited state manifold is often quite dense with degenerate states. Furthermore, we test the degree to which certain symmetries result naturally from the ΔSCF optimization such as time-reversal symmetry and symmetry with respect to the total angular momentum operator on a series of atomic systems. Variational optimizations may often break the symmetry in order to lower the overall energy, just as unrestricted Hartree-Fock breaks spin symmetry. Overall, we demonstrate that time-reversal symmetry is roughly maintained when using Hartree-Fock, but less so when using Kohn-Sham density functional theory. Additionally, maintaining total angular momentum symmetry appears to be system dependent and not guaranteed. Finally, we were able to trace the breaking of total angular momentum symmetry to the relaxation of core electrons.
Collapse
Affiliation(s)
- Adam Grofe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China; Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA; and Beijing University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
18
|
Desmarais JK, Komorovsky S, Flament JP, Erba A. Spin–orbit coupling from a two-component self-consistent approach. II. Non-collinear density functional theories. J Chem Phys 2021; 154:204110. [DOI: 10.1063/5.0051447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jacques K. Desmarais
- Dipartimento di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Jean-Pierre Flament
- Université de Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers, Atomes et Molécules, 59000 Lille, France
| | - Alessandro Erba
- Dipartimento di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
| |
Collapse
|
19
|
Besley NA. Modeling of the spectroscopy of core electrons with density functional theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1527] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nicholas A. Besley
- School of Chemistry, University of Nottingham University Park Nottingham UK
| |
Collapse
|
20
|
Garner SM, Neuscamman E. A variational Monte Carlo approach for core excitations. J Chem Phys 2020; 153:144108. [DOI: 10.1063/5.0020310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Scott M. Garner
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
21
|
Li X, Govind N, Isborn C, DePrince AE, Lopata K. Real-Time Time-Dependent Electronic Structure Theory. Chem Rev 2020; 120:9951-9993. [DOI: 10.1021/acs.chemrev.0c00223] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christine Isborn
- Department of Chemistry and Chemical Biology, University of California, Merced, California 95343, United States
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
22
|
Chen M, Lopata K. First-Principles Simulations of X-ray Transient Absorption for Probing Attosecond Electron Dynamics. J Chem Theory Comput 2020; 16:4470-4478. [PMID: 32470295 PMCID: PMC7467644 DOI: 10.1021/acs.jctc.0c00122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-ray transient absorption spectroscopy (XTAS) is a promising technique for measuring electron dynamics in molecules and solids with attosecond time resolutions. In XTAS, the elemental specificity and spatial locality of core-to-valence X-ray absorption is exploited to relate modulations in the time-resolved absorption spectra to local electron density variations around particular atoms. However, interpreting these absorption modulations and frequency shifts as a function of the time delay in terms of dynamics can be challenging. In this paper, we present a first-principles study of attosecond XTAS in a selection of simple molecules based on real-time time-dependent density functional theory (RT-TDDFT) with constrained DFT to emulate the state of the system following the interaction with a ultraviolet pump laser. In general, there is a decrease in the optical density and a blue shift in the frequency with increasing electron density around the absorbing atom. In carbon monoxide (CO), modulations in the O K-edge occur at the frequency of the valence electron dynamics, while for dioxygen (O2) they occur at twice the frequency, due to the indistinguishability of the oxygen atoms. In 4-aminophenol (H2NC6H4OH), likewise, there is a decrease in the optical density and a blue shift in the frequency for the oxygen and nitrogen K-edges with increasing charge density on the O and N, respectively. Similar effects are observed in the nitrogen K-edge for a long-range charge-transfer excitation in a benzene (C6H6)-tetracyanoethylene (C6N4; TCNE) dimer but with weaker modulations due to the delocalization of the charge across the entire TCNE molecule. Additionally, in all cases, there are pre-edge features corresponding to core transitions to depopulated orbitals. These potentially offer a background-free signal that only appears in pumped molecules.
Collapse
Affiliation(s)
- Min Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
23
|
Källman E, Delcey MG, Guo M, Lindh R, Lundberg M. Quantifying similarity for spectra with a large number of overlapping transitions: Examples from soft X-ray spectroscopy. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Kasper JM, Li X. Natural transition orbitals for complex two-component excited state calculations. J Comput Chem 2020; 41:1557-1563. [PMID: 32220083 DOI: 10.1002/jcc.26196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/26/2019] [Accepted: 03/09/2020] [Indexed: 01/02/2023]
Abstract
While the natural transition orbital (NTO) method has allowed electronic excitations from time-dependent Hartree-Fock and density functional theory to be viewed in a traditional orbital picture, the extension to multicomponent molecular orbitals such as those used in relativistic two-component methods or generalized Hartree-Fock (GHF) or generalized Kohn-Sham (GKS) is less straightforward due to mixing of spin-components and the inherent inclusion of spin-flip transitions in time-dependent GHF/GKS. An extension of single-component NTOs to the two-component framework is presented, in addition to a brief discussion of the practical aspects of visualizing two-component complex orbitals. Unlike the single-component analog, the method explicitly describes the spin and frequently obtains solutions with several significant orbital pairs. The method is presented using calculations on a mercury atom and a CrO2 Cl2 complex.
Collapse
Affiliation(s)
- Joseph M Kasper
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
25
|
Zhang T, Kasper JM, Li X. Localized relativistic two-component methods for ground and excited state calculations. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/bs.arcc.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
26
|
Konecny L, Repisky M, Ruud K, Komorovsky S. Relativistic four-component linear damped response TDDFT for electronic absorption and circular dichroism calculations. J Chem Phys 2019; 151:194112. [DOI: 10.1063/1.5128564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Lukas Konecny
- Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
27
|
Koulias LN, Williams-Young DB, Nascimento DR, DePrince AE, Li X. Relativistic Real-Time Time-Dependent Equation-of-Motion Coupled-Cluster. J Chem Theory Comput 2019; 15:6617-6624. [DOI: 10.1021/acs.jctc.9b00729] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lauren N. Koulias
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David B. Williams-Young
- Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50A-3111, Berkeley, California 94720, United States
| | - Daniel R. Nascimento
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|