1
|
Sugimori R, Okada K, Kishi R, Kitagawa Y. Stacked-ring aromaticity from the viewpoint of the effective number of π-electrons. Chem Sci 2025; 16:1707-1715. [PMID: 39759931 PMCID: PMC11694183 DOI: 10.1039/d4sc07123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
In this study, we theoretically examined the mechanism of aromaticity induced in closely stacked cofacial π-dimers of 4nπ antiaromatic molecules, which is called stacked-ring aromaticity, in terms of the effective number of π-electrons (N π) and Baird's rule. High-precision quantum chemical calculations combined with a multi-configurational wavefunction analysis revealed that double-triplet [1(T1T1)] and intermolecular charge-transfer (CT) electron configurations mix substantially in the ground state wavefunctions of cyclobutadiene and Ni(ii) norcorrole dimer models at small stacking distance (d). Since the T1 configuration gives rise to two unpaired electrons, the remaining 4n - 2 π electrons still participate in the intramolecular conjugation, which can be interpreted as the origin of the aromaticity of each monomer. Consequently, the aromaticity of each T1-like monomer was associated with Baird's rule. On the other hand, the increased weight of the CT configuration indicated the intermolecular delocalization of the formally unpaired four electrons derived from the 1(T1T1) configuration, resulting in the intermolecular bonding interaction. This interaction contributed to the energy stabilization of the closely stacked π-dimers, even though the degree of the energy gain is considered insufficient for achieving self-aggregation of the π-dimers at d ∼3 Å. Our calculations have demonstrated that we should discuss the energy stabilization mechanism separately from the tropicity and structural changes within each monomer, although they are mutually linked through the appearance of 1(T1T1) configuration.
Collapse
Affiliation(s)
- Ryota Sugimori
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Kenji Okada
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
- Center for Quantum Information and Quantum Biology Division (QIQB), Osaka University Toyonaka Osaka 560-8531 Japan
- Research Center for Solar Energy Chemistry (RCSEC), Division of Quantum Photochemical Engineering, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| | - Yasutaka Kitagawa
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
- Center for Quantum Information and Quantum Biology Division (QIQB), Osaka University Toyonaka Osaka 560-8531 Japan
- Research Center for Solar Energy Chemistry (RCSEC), Division of Quantum Photochemical Engineering, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
- Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI-Spin), Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
2
|
Muñoz-Castro A. Beyond The Sphere. Au 20(PR 3) 8 as a Spherical Aromatic Cuboctahedron Cluster. Chem Asian J 2024:e202400670. [PMID: 39227900 DOI: 10.1002/asia.202400670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
The icosahedral Au13 5+ core is a recurrent building block in ligand-protected gold clusters involving an 8-cluster electron 1S21P6 electronic shell. Such a prototypical structure enables a spherical aromatic behavior as given by long-range magnetic shielding. Recently, the Au20(tBu3P)8 cluster featuring a contrasting cuboctahedral core with formally neutral gold atoms appears as a novel core architecture with the potential to be considered as another potential building block towards functional nanostructures. Here, we explore the ligand-core interaction and spherical aromatic characteristics of Au20(tBu3P)8, in order to provide a direct connection to classical icosahedral spherical aromatic compounds, now involving a cuboctahedral core structure. Such characteristics suggest rationalization of their robustness in terms of certain electron counts, enabling a shielding cone property in ligand-protected metallic clusters, which favors bridging organic and inorganic planar/spherical aromatic species towards the unification of the aromaticity concept and designing guidelines for further achievements.
Collapse
Affiliation(s)
- Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad, San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| |
Collapse
|
3
|
Orozco-Ic M, Soriano-Agueda L, Sundholm D, Matito E, Merino G. Core-electron contributions to the magnetic response of molecules with heavy elements and their significance in aromaticity assessments. Chem Sci 2024; 15:12906-12921. [PMID: 39148783 PMCID: PMC11323299 DOI: 10.1039/d4sc02269f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
This study delves into the magnetic response of core electrons and their influence on the global magnetic response of planar and three-dimensional systems containing heavy elements, employing the removing valence electron (RVE) approximation. We also explore electronic aromaticity indices to understand the potential role of core electrons on electron delocalization in the absence of an external perturbation. The study reveals that core electrons significantly contribute to the overall magnetic response, especially to the magnetic shielding, affecting the interpretation of aromaticity. In contrast, the calculation of the electronic aromaticity indices suggests a negligible participation of the core electrons on electron delocalization. Despite their widespread use, the study emphasizes caution in labeling systems as strongly aromatic based solely on shielding function computations. It is noteworthy to emphasize the limitations associated with each aromaticity criterion; particularly in the context of magnetic shielding function calculations, the core-electron effect contamination is undeniable. Hence, the integration of various criteria becomes imperative for attaining a comprehensive understanding of magnetic responses within complex systems.
Collapse
Affiliation(s)
- Mesías Orozco-Ic
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
| | | | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki P.O. Box 55, A. I. Virtasen aukio 1 FIN-00014 Helsinki Finland
| | - Eduard Matito
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex 97310 Mérida Yuc. Mexico
| |
Collapse
|
4
|
Wang Q, Sundholm D, Gauss J, Nottoli T, Lipparini F, Kino S, Ukai S, Fukui N, Shinokubo H. Changing aromatic properties through stacking: the face-to-face dimer of Ni(II) bis(pentafluorophenyl)norcorrole. Phys Chem Chem Phys 2024; 26:14777-14786. [PMID: 38716819 DOI: 10.1039/d4cp00968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Nuclear magnetic resonance (NMR) shielding constants have been calculated for Ni(II) bis(pentafluorophenyl)norcorrole and its face-to-face stacked dimer at the Hartree-Fock (HF), second-order Møller-Plesset perturbation theory (MP2), complete-active-space self-consistent-field (CASSCF) levels as well as at density functional theory (DFT) levels using several functionals. The calculated 1H NMR shielding constants agree rather well with the experimental ones. The shielding constants of N and Ni calculated at DFT, HF, and MP2 levels differ from those obtained in the CASSCF calculations due to near-degeneracy effects at the Ni atom. The calculated magnetically induced current densities show that the monomer is antiaromatic, sustaining a strong global paratropic ring current, and the dimer is aromatic, sustaining a strong diatropic ring current. Qualitatively the same current density is obtained at the employed levels of theory. The most accurate ring-current strengths are probably obtained at the MP2 level. The aromatic dimer has a short intermolecular distance of less than 3 Å. The intermolecular interaction changes the nature of the frontier orbitals leading to a formal double bond between the norcorrole macrocycles.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), FIN-00014, Finland.
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), FIN-00014, Finland.
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Tommaso Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Shota Kino
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Shusaku Ukai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Graduate School of Engineering, Nagoya University, 2JST PRESTO, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
5
|
Orozco-Ic M, Soriano-Agueda L, Escayola S, Sundholm D, Merino G, Matito E. Understanding Aromaticity in [5]Helicene-Bridged Cyclophanes: A Comprehensive Study. J Org Chem 2024; 89:2459-2466. [PMID: 38236016 DOI: 10.1021/acs.joc.3c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This study explores the aromaticity of doubly [5]helicene-bridged (1,4)cyclophane and triply [5]helicene-bridged (1,3,5)cyclophane via calculations of the magnetic response and of electronic aromaticity indices. The primary objective is to assess the π-electron delocalization to determine whether they sustain global ring currents associated with π aromaticity. The molecules show local ring currents in the presence of an external magnetic field. The ring currents flow diatropically in the stacked six-membered rings and in the helicene arms. However, these π currents are not interconnected due to the discontinuity of the π delocalization at the C-C single bonds connecting the central six-membered rings to the helicene arms. Electronic indices suggest that the helicene-arm systems have significantly smaller electron delocalization than benzene. The reduction in the delocalization does not compromise their ability to exhibit ring currents in the presence of an external magnetic field. The analysis provides further evidence that the magnetic criteria yield a different degree of aromaticity for the helicene arms than obtained in the calculation of the electronic aromaticity indices. However, both approaches confirm that the studied molecules are not globally aromatic.
Collapse
Affiliation(s)
- Mesías Orozco-Ic
- Donostia International Physics Center (DIPC), Donostia, 20018 Euskadi, Spain
| | - Luis Soriano-Agueda
- Donostia International Physics Center (DIPC), Donostia, 20018 Euskadi, Spain
| | - Sílvia Escayola
- Donostia International Physics Center (DIPC), Donostia, 20018 Euskadi, Spain
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany, 69, Girona, 17003 Catalonia, Spain
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, FIN-00014 Helsinki, Finland
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310 Mérida, Yuc., México
| | - Eduard Matito
- Donostia International Physics Center (DIPC), Donostia, 20018 Euskadi, Spain
| |
Collapse
|
6
|
Orozco-Ic M, Sundholm D. On the antiaromatic-aromatic-antiaromatic transition of the stacked cyclobutadiene dimer. Phys Chem Chem Phys 2023; 25:12777-12782. [PMID: 37128984 DOI: 10.1039/d3cp01350b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have studied the changes in the aromatic nature of two cyclobutadiene (C4H4) molecules on decreasing the intermolecular distance and approaching the cubane structure in a face-to-face fashion. The analysis based on the calculations of the magnetically induced current density and the induced magnetic field shows that the aromaticity of the two C4H4 rings changes from a strongly antiaromatic character at long distances to an aromatic transition state of stacked C4H4 rings at intermediate internuclear distances when approaching the antiaromatic state of cubane.
Collapse
Affiliation(s)
- Mesías Orozco-Ic
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland.
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland.
| |
Collapse
|
7
|
Abstract
The aromaticity of [n]starphenes (n = 1, 4, 7, 10, 13, 16), as well as starphene-based [19]dendriphene, is addressed by calculating the magnetically induced current density and the induced magnetic field, using the pseudo-π model. When an external magnetic field is applied, these systems create diatropic currents that split into a global peripheral current surrounding the starphene skeleton and several local currents in the acene-based arms, resulting in large shielding cones above the arms. In particular, the arm currents are smaller than their linear analogs, and in general, the strengths of the ring currents tend to weaken as the starphene get larger.
Collapse
|