1
|
Sah MK, Naskar K, Adhikari S, Smits B, Meyer J, Somers MF. On the quantum dynamical treatment of surface vibrational modes for reactive scattering of H2 from Cu(111) at 925 K. J Chem Phys 2024; 161:014306. [PMID: 38953445 DOI: 10.1063/5.0217639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
We construct the effective Hartree potential for H2 on Cu(111) as introduced in our earlier work [Dutta et al., J. Chem. Phys. 154, 104103 (2021), and Dutta et al., J. Chem. Phys. 157, 194112 (2022)] starting from the same gas-metal interaction potential obtained for 0 K. Unlike in that work, we now explicitly account for surface expansion at 925 K and investigate different models to describe the surface vibrational modes: (i) a cluster model yielding harmonic normal modes at 0 K and (ii) slab models resulting in phonons at 0 and 925 K according to the quasi-harmonic approximation-all consistently calculated at the density functional theory level with the same exchange-correlation potential. While performing dynamical calculations for the H2(v = 0, j = 0)-Cu(111) system employing Hartree potential constructed with 925 K phonons and surface temperature, (i) the calculated chemisorption probabilities are the highest compared to the other approaches over the energy domain and (ii) the threshold for the reaction probability is the lowest, in close agreement with the experiment. Although the survival probabilities (v' = 0) depict the expected trend (lower in magnitude), the excitation probabilities (v' = 1) display a higher magnitude since the 925 K phonons and surface temperature are more effective for the excitation process compared to the phonons/normal modes obtained from the other approaches investigated to describe the surface.
Collapse
Affiliation(s)
- Mantu Kumar Sah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Bauke Smits
- Leiden Institute of Chemistry, Gorlaeus Building, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jörg Meyer
- Leiden Institute of Chemistry, Gorlaeus Building, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Mark F Somers
- Leiden Institute of Chemistry, Gorlaeus Building, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
2
|
Gerrits N, Jackson B, Bogaerts A. Accurate Reaction Probabilities for Translational Energies on Both Sides of the Barrier of Dissociative Chemisorption on Metal Surfaces. J Phys Chem Lett 2024; 15:2566-2572. [PMID: 38416779 PMCID: PMC10926167 DOI: 10.1021/acs.jpclett.3c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Molecular dynamics simulations are essential for a better understanding of dissociative chemisorption on metal surfaces, which is often the rate-controlling step in heterogeneous and plasma catalysis. The workhorse quasi-classical trajectory approach ubiquitous in molecular dynamics is able to accurately predict reactivity only for high translational and low vibrational energies. In contrast, catalytically relevant conditions generally involve low translational and elevated vibrational energies. Existing quantum dynamics approaches are intractable or approximate as a result of the large number of degrees of freedom present in molecule-metal surface reactions. Here, we extend a ring polymer molecular dynamics approach to fully include, for the first time, the degrees of freedom of a moving metal surface. With this approach, experimental sticking probabilities for the dissociative chemisorption of methane on Pt(111) are reproduced for a large range of translational and vibrational energies by including nuclear quantum effects and employing full-dimensional simulations.
Collapse
Affiliation(s)
- Nick Gerrits
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Post Office
Box 9502, 2300 RA Leiden, Netherlands
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610, Wilrijk, Antwerp, Belgium
| | - Bret Jackson
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Annemie Bogaerts
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610, Wilrijk, Antwerp, Belgium
| |
Collapse
|
3
|
Tchakoua T, Gerrits N, Smeets EWF, Kroes GJ. SBH17: Benchmark Database of Barrier Heights for Dissociative Chemisorption on Transition Metal Surfaces. J Chem Theory Comput 2022; 19:245-270. [PMID: 36529979 PMCID: PMC9835835 DOI: 10.1021/acs.jctc.2c00824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accurate barriers for rate controlling elementary reactions on metal surfaces are key to understanding, controlling, and predicting the rate of heterogeneously catalyzed processes. While barrier heights for gas phase reactions have been extensively benchmarked, dissociative chemisorption barriers for the reactions of molecules on metal surfaces have received much less attention. The first database called SBH10 and containing 10 entries was recently constructed based on the specific reaction parameter approach to density functional theory (SRP-DFT) and experimental results. We have now constructed a new and improved database (SBH17) containing 17 entries based on SRP-DFT and experiments. For this new SBH17 benchmark study, we have tested three algorithms (high, medium, and light) for calculating barrier heights for dissociative chemisorption on metals, which we have named for the amount of computational effort involved in their use. We test the performance of 14 density functionals at the GGA, GGA+vdW-DF, and meta-GGA rungs. Our results show that, in contrast with the previous SBH10 study where the BEEF-vdW-DF2 functional seemed to be most accurate, the workhorse functional PBE and the MS2 density functional are the most accurate of the GGA and meta-GGA functionals tested. Of the GGA+vdW functionals tested, the SRP32-vdW-DF1 functional is the most accurate. Additionally, we found that the medium algorithm is accurate enough for assessing the performance of the density functionals tested, while it avoids geometry optimizations of minimum barrier geometries for each density functional tested. The medium algorithm does require metal lattice constants and interlayer distances that are optimized separately for each functional. While these are avoided in the light algorithm, this algorithm is found not to give a reliable description of functional performance. The combination of relative ease of use and demonstrated reliability of the medium algorithm will likely pave the way for incorporation of the SBH17 database in larger databases used for testing new density functionals and electronic structure methods.
Collapse
Affiliation(s)
- T. Tchakoua
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - N. Gerrits
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,PLASMANT,
Department of Chemistry, University of Antwerp, BE-2610Antwerp, Belgium
| | - E. W. F. Smeets
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,ALTEN
Nederland, Technology, Fascinatio Boulevard 582, 2909 VACapelle a/d IJssel, The Netherlands
| | - G.-J. Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,E-mail: . Phone: +31 71 527 4396
| |
Collapse
|
4
|
Wei F, Smeets EWF, Voss J, Kroes GJ, Lin S, Guo H. Assessing density functionals for describing methane dissociative chemisorption on Pt(110)-(2×1) surface. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Fenfei Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Egidius W. F. Smeets
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Johannes Voss
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park CA 94025, USA
| | - Geert-Jan Kroes
- Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
5
|
Putra SEM, Morikawa Y, Hamada I. Isotope effect of methane adsorbed on fcc metal (1 1 1) surfaces. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Kroes GJ. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy. Phys Chem Chem Phys 2021; 23:8962-9048. [PMID: 33885053 DOI: 10.1039/d1cp00044f] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the state-of-the-art in the theory of dissociative chemisorption (DC) of small gas phase molecules on metal surfaces, which is important to modeling heterogeneous catalysis for practical reasons, and for achieving an understanding of the wealth of experimental information that exists for this topic, for fundamental reasons. We first give a quick overview of the experimental state of the field. Turning to the theory, we address the challenge that barrier heights (Eb, which are not observables) for DC on metals cannot yet be calculated with chemical accuracy, although embedded correlated wave function theory and diffusion Monte-Carlo are moving in this direction. For benchmarking, at present chemically accurate Eb can only be derived from dynamics calculations based on a semi-empirically derived density functional (DF), by computing a sticking curve and demonstrating that it is shifted from the curve measured in a supersonic beam experiment by no more than 1 kcal mol-1. The approach capable of delivering this accuracy is called the specific reaction parameter (SRP) approach to density functional theory (DFT). SRP-DFT relies on DFT and on dynamics calculations, which are most efficiently performed if a potential energy surface (PES) is available. We therefore present a brief review of the DFs that now exist, also considering their performance on databases for Eb for gas phase reactions and DC on metals, and for adsorption to metals. We also consider expressions for SRP-DFs and briefly discuss other electronic structure methods that have addressed the interaction of molecules with metal surfaces. An overview is presented of dynamical models, which make a distinction as to whether or not, and which dissipative channels are modeled, the dissipative channels being surface phonons and electronically non-adiabatic channels such as electron-hole pair excitation. We also discuss the dynamical methods that have been used, such as the quasi-classical trajectory method and quantum dynamical methods like the time-dependent wave packet method and the reaction path Hamiltonian method. Limits on the accuracy of these methods are discussed for DC of diatomic and polyatomic molecules on metal surfaces, paying particular attention to reduced dimensionality approximations that still have to be invoked in wave packet calculations on polyatomic molecules like CH4. We also address the accuracy of fitting methods, such as recent machine learning methods (like neural network methods) and the corrugation reducing procedure. In discussing the calculation of observables we emphasize the importance of modeling the properties of the supersonic beams in simulating the sticking probability curves measured in the associated experiments. We show that chemically accurate barrier heights have now been extracted for DC in 11 molecule-metal surface systems, some of which form the most accurate core of the only existing database of Eb for DC reactions on metal surfaces (SBH10). The SRP-DFs (or candidate SRP-DFs) that have been derived show transferability in many cases, i.e., they have been shown also to yield chemically accurate Eb for chemically related systems. This can in principle be exploited in simulating rates of catalyzed reactions on nano-particles containing facets and edges, as SRP-DFs may be transferable among systems in which a molecule dissociates on low index and stepped surfaces of the same metal. In many instances SRP-DFs have allowed important conclusions regarding the mechanisms underlying observed experimental trends. An important recent observation is that SRP-DFT based on semi-local exchange DFs has so far only been successful for systems for which the difference of the metal work function and the molecule's electron affinity exceeds 7 eV. A main challenge to SRP-DFT is to extend its applicability to the other systems, which involve a range of important DC reactions of e.g. O2, H2O, NH3, CO2, and CH3OH. Recent calculations employing a PES based on a screened hybrid exchange functional suggest that the road to success may be based on using exchange functionals of this category.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
7
|
Zhou X, Zhang Y, Guo H, Jiang B. Towards bridging the structure gap in heterogeneous catalysis: the impact of defects in dissociative chemisorption of methane on Ir surfaces. Phys Chem Chem Phys 2021; 23:4376-4385. [DOI: 10.1039/d0cp06535h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The negatively activated region in CH4 dissociation is attributed to a precursor-mediated mechanism involving surface defects.
Collapse
Affiliation(s)
- Xueyao Zhou
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
8
|
Ren Y, Liu X, Zhang Z, Shen X. Methane activation on single-atom Ir-doped metal nanoparticles from first principles. Phys Chem Chem Phys 2021; 23:15564-15573. [PMID: 34259268 DOI: 10.1039/d1cp02022f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The breaking of the C-H bond of CH4 is of great importance, and one of the most efficient strategies in heterogeneous catalysis is to alter the electronic structure of a surface by doping it with different metal elements or controlling the stoichiometry. We present an in-depth study on methane activation on pure metal and single-atom Ir-doped alloy nanoparticles, which are constructed based on (100), (110), (111) surfaces using density functional theory (DFT) calculations. DFT results show that the dissociation barriers of CH4 on the Ir-doped alloy surfaces are about 0.3-0.4 eV, much lower than those on the pure metal surfaces (i.e., 0.6-0.8 eV). DFT-based transition state theory further reveals the rates of the first C-H activation on single-atom Ir-doped alloy nanoparticles at the early stages. Importantly, a strong temperature dependence is mainly contributed by the proportion of the exposed (110) surface. The Ir-doped Pt nanoparticle is found to be an efficient catalyst for methane activation in potential industrial applications. These important results are helpful for further designing new metal catalysts for methane activation at the atomic/molecular level.
Collapse
Affiliation(s)
- Yugang Ren
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaojing Liu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Xiangjian Shen
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Jackson B. Direct and trapping-mediated pathways to dissociative chemisorption: CH4 dissociation on Ir(111) with step defects. J Chem Phys 2020; 153:034704. [DOI: 10.1063/5.0012252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bret Jackson
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
10
|
Moiraghi R, Lozano A, Peterson E, Utz A, Dong W, Busnengo HF. Nonthermalized Precursor-Mediated Dissociative Chemisorption at High Catalysis Temperatures. J Phys Chem Lett 2020; 11:2211-2218. [PMID: 32073863 DOI: 10.1021/acs.jpclett.0c00260] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Quasiclassical trajectory calculations and vibrational-state-selected beam-surface measurements of CH4 chemisorption on Ir(111) reveal a nonthermal, hot-molecule mechanism for C-H bond activation. Low-energy vibrationally excited molecules become trapped in the physisorption well and react before vibrational and translational energies accommodate the surface. The reaction probability is strongly surface-temperature-dependent and arises from the pivotal role of Ir atom thermal motion. In reactive trajectories, the mean outward Ir atom displacement largely exceeds that of the transition-state geometry obtained through a full geometry optimization. The study also highlights a new way for (temporary) surface defects to impact high-temperature heterogeneous catalytic reactivity. Instead of reactants diffusing to and competing for geometrically localized lower barrier sites, transient, thermally activated surface atom displacements deliver low-barrier surface reaction geometries to the physisorbed reactants.
Collapse
Affiliation(s)
- Raquel Moiraghi
- Instituto de Investigaciones en Fisicoquimica de Córdoba, CONICET, Universidad Nacional de Córdoba, Haya de la Torre s/n, X5000HUA Córdoba, Argentina
| | - Ariel Lozano
- Department of Electrical Engineering and Computer Science, University of Lige, Alle de la Découverte 10, B-4000 Lige, Belgium
| | - Eric Peterson
- Department of Chemistry and W. M. Keck Foundation Laboratory of Materials Science, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Arthur Utz
- Department of Chemistry and W. M. Keck Foundation Laboratory of Materials Science, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Wei Dong
- Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46, Allée d'Itallie, 69364 Lyon Cedex 07, France
- College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, China
| | - H Fabio Busnengo
- Grupo de Fisicoquímica en Interfases y Nanoestructuras, Instituto de Física Rosario and Universidad Nacional de Rosario, Bv. 27 de Febrero 210 bis, 2000 Rosario, Argentina
| |
Collapse
|