1
|
Chen X, Al-Mualem ZA, Baiz CR. Lipid Landscapes: Vibrational Spectroscopy for Decoding Membrane Complexity. Annu Rev Phys Chem 2024; 75:283-305. [PMID: 38382566 DOI: 10.1146/annurev-physchem-090722-010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Cell membranes are incredibly complex environments containing hundreds of components. Despite substantial advances in the past decade, fundamental questions related to lipid-lipid interactions and heterogeneity persist. This review explores the complexity of lipid membranes, showcasing recent advances in vibrational spectroscopy to characterize the structure, dynamics, and interactions at the membrane interface. We include an overview of modern techniques such as surface-enhanced infrared spectroscopy as a steady-state technique with single-bilayer sensitivity, two-dimensional sum-frequency generation spectroscopy, and two-dimensional infrared spectroscopy to measure time-evolving structures and dynamics with femtosecond time resolution. Furthermore, we discuss the potential of multiscale molecular dynamics (MD) simulations, focusing on recently developed simulation algorithms, which have emerged as a powerful approach to interpret complex spectra. We highlight the ongoing challenges in studying heterogeneous environments in multicomponent membranes via current vibrational spectroscopic techniques and MD simulations. Overall, this review provides an up-to-date comprehensive overview of the powerful combination of vibrational spectroscopy and simulations, which has great potential to illuminate lipid-lipid, lipid-protein, and lipid-water interactions in the intricate conformational landscape of cell membranes.
Collapse
Affiliation(s)
- Xiaobing Chen
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA;
| | | | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA;
| |
Collapse
|
2
|
Fukuda I, Nakamura H. Non-Ewald methods for evaluating the electrostatic interactions of charge systems: similarity and difference. Biophys Rev 2022; 14:1315-1340. [PMID: 36659982 PMCID: PMC9842848 DOI: 10.1007/s12551-022-01029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/30/2022] [Indexed: 01/13/2023] Open
Abstract
In molecular simulations, it is essential to properly calculate the electrostatic interactions of particles in the physical system of interest. Here we consider a method called the non-Ewald method, which does not rely on the standard Ewald method with periodic boundary conditions, but instead relies on the cutoff-based techniques. We focus on the physicochemical and mathematical conceptual aspects of the method in order to gain a deeper understanding of the simulation methodology. In particular, we take into account the reaction field (RF) method, the isotropic periodic sum (IPS) method, and the zero-multipole summation method (ZMM). These cutoff-based methods are based on different physical ideas and are completely distinguishable in their underlying concepts. The RF and IPS methods are "additive" methods that incorporate information outside the cutoff region, via dielectric medium and isotropic boundary condition, respectively. In contrast, the ZMM is a "subtraction" method that tries to remove the artificial effects, generated near the boundary, from the cutoff sphere. Nonetheless, we find physical and/or mathematical similarities between these methods. In particular, the modified RF method can be derived by the principle of neutralization utilized in the ZMM, and we also found a direct relationship between IPS and ZMM.
Collapse
Affiliation(s)
- Ikuo Fukuda
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima, Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
3
|
Man VH, Wu X, He X, Xie XQ, Brooks BR, Wang J. Determination of van der Waals Parameters Using a Double Exponential Potential for Nonbonded Divalent Metal Cations in TIP3P Solvent. J Chem Theory Comput 2021; 17:1086-1097. [PMID: 33503371 DOI: 10.1021/acs.jctc.0c01267] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A double exponential (DE) functional form for Lennard-Jones (LJ) interactions, proposed in our previous study, has many advantages over LJ potentials including a natural softcore characteristic for the convenience of the pathway-based free-energy calculations, fast convergence, and flexibility in use. In this work, we put the first step on the application of the DE functional form by identifying a DE potential, coined DE-TIP3P, for molecular simulations using the TIP3P water model. The developed DE-TIP3 potential was better than LJ potential in reproducing the experimental water properties. Afterward, we developed the nonbonded models of 15 divalent metal ions, which frequently appear and play vital roles in biological systems, to be consistent with the DE-TIP3P potential and TIP3P water model. Our nonbonded models were as good as the complicated nonbonded dummy cationic models by Jiang et al. and the nonbonded 12-6-4 LJ models by Li and Merz in reproducing the experimental properties of those ions. Moreover, our nonbonded models achieved a better performance than the compromise (CM) LJ models and 12-6-4 LJ models, developed by Li and Merz, in reproducing the properties of MgCl2 in aqueous solution.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiongwu Wu
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, Maryland 20892, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, Maryland 20892, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
4
|
Kubincová A, Riniker S, Hünenberger PH. Reaction-field electrostatics in molecular dynamics simulations: development of a conservative scheme compatible with an atomic cutoff. Phys Chem Chem Phys 2020; 22:26419-26437. [DOI: 10.1039/d0cp03835k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Shifting and switching schemes are developed to enable strict energy conservation in molecular dynamics simulations relying on reaction-field electrostatic (as well as Lennard-Jones) interactions with an atom-based cutoff truncation.
Collapse
Affiliation(s)
| | - Sereina Riniker
- Laboratory of Physical Chemistry
- ETH Zurich
- 8093 Zurich
- Switzerland
| | | |
Collapse
|
5
|
Boateng HA. Periodic Coulomb Tree Method: An Alternative to Parallel Particle Mesh Ewald. J Chem Theory Comput 2019; 16:7-17. [PMID: 31747267 DOI: 10.1021/acs.jctc.9b00648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Particle mesh Ewald (PME) is generally the method of choice for handling electrostatics in simulations with periodic boundary conditions. The excellent efficiency of PME on low processor counts is largely due to the use of the fast Fourier transform (FFT). However, due to the FFT's high communication cost, PME scales poorly in parallel. We develop a periodic Coulomb tree (PCT) method for electrostatic interactions in periodic boundary conditions as an alternative to PME in parallel simulations. We verify the accuracy of PCT by comparison of structural and dynamical properties of three different systems obtained via MD simulations using PME and PCT and provide parallel timing comparisons of the two methods on up to 1024 cores.
Collapse
Affiliation(s)
- Henry A Boateng
- Department of Mathematics , San Francisco State University , 1600 Holloway Ave. , San Francisco , California 94132 , United States.,Department of Mathematics , Bates College , 2 Andrews Rd. , Lewiston , Maine 04240 , United States
| |
Collapse
|