1
|
Garratt D, Matthews M, Marangos J. Toward ultrafast soft x-ray spectroscopy of organic photovoltaic devices. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:010901. [PMID: 38250136 PMCID: PMC10799687 DOI: 10.1063/4.0000214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
Novel ultrafast x-ray sources based on high harmonic generation and at x-ray free electron lasers are opening up new opportunities to resolve complex ultrafast processes in condensed phase systems with exceptional temporal resolution and atomic site specificity. In this perspective, we present techniques for resolving charge localization, transfer, and separation processes in organic semiconductors and organic photovoltaic devices with time-resolved soft x-ray spectroscopy. We review recent results in ultrafast soft x-ray spectroscopy of these systems and discuss routes to overcome the technical challenges in performing time-resolved x-ray experiments on photosensitive materials with poor thermal conductivity and low pump intensity thresholds for nonlinear effects.
Collapse
|
2
|
Yin Z, Chang YP, Balčiūnas T, Shakya Y, Djorović A, Gaulier G, Fazio G, Santra R, Inhester L, Wolf JP, Wörner HJ. Femtosecond proton transfer in urea solutions probed by X-ray spectroscopy. Nature 2023; 619:749-754. [PMID: 37380782 PMCID: PMC10371863 DOI: 10.1038/s41586-023-06182-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/09/2023] [Indexed: 06/30/2023]
Abstract
Proton transfer is one of the most fundamental events in aqueous-phase chemistry and an emblematic case of coupled ultrafast electronic and structural dynamics1,2. Disentangling electronic and nuclear dynamics on the femtosecond timescales remains a formidable challenge, especially in the liquid phase, the natural environment of biochemical processes. Here we exploit the unique features of table-top water-window X-ray absorption spectroscopy3-6 to reveal femtosecond proton-transfer dynamics in ionized urea dimers in aqueous solution. Harnessing the element specificity and the site selectivity of X-ray absorption spectroscopy with the aid of ab initio quantum-mechanical and molecular-mechanics calculations, we show how, in addition to the proton transfer, the subsequent rearrangement of the urea dimer and the associated change of the electronic structure can be identified with site selectivity. These results establish the considerable potential of flat-jet, table-top X-ray absorption spectroscopy7,8 in elucidating solution-phase ultrafast dynamics in biomolecular systems.
Collapse
Affiliation(s)
- Zhong Yin
- Laboratory of Physical Chemistry, ETH Zürich, Zurich, Switzerland.
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Miyagi, Sendai, Japan.
| | - Yi-Ping Chang
- GAP-Biophotonics, Université de Genève, Geneva, Switzerland
- European XFEL, Schenefeld, Germany
| | - Tadas Balčiūnas
- Laboratory of Physical Chemistry, ETH Zürich, Zurich, Switzerland
- GAP-Biophotonics, Université de Genève, Geneva, Switzerland
| | - Yashoj Shakya
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | | | | | - Giuseppe Fazio
- Laboratory of Physical Chemistry, ETH Zürich, Zurich, Switzerland
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
| | - Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany.
| | | | | |
Collapse
|
3
|
Borchert M, Braenzel J, Gnewkow R, Lunin L, Sidiropoulos T, Tümmler J, Will I, Noll T, Reichel O, Rohloff D, Erko A, Krist T, von Korff Schmising C, Pfau B, Eisebitt S, Stiel H, Schick D. Versatile tabletop setup for picosecond time-resolved resonant soft-x-ray scattering and spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:063102. [PMID: 37862537 DOI: 10.1063/5.0151613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/31/2023] [Indexed: 10/22/2023]
Abstract
We present a laser-driven, bright, and broadband (50 to 1500 eV) soft-x-ray plasma source with <10 ps pulse duration. This source is employed in two complementary, laboratory-scale beamlines for time-resolved, magnetic resonant scattering and spectroscopy, as well as near-edge x-ray absorption fine-structure (NEXAFS) spectroscopy. In both beamlines, dedicated reflection zone plates (RZPs) are used as single optical elements to capture, disperse, and focus the soft x rays, reaching resolving powers up to E/ΔE > 1000, with hybrid RZPs at the NEXAFS beamline retaining a consistent E/ΔE > 500 throughout the full spectral range, allowing for time-efficient data acquisition. We demonstrate the versatility and performance of our setup by a selection of soft-x-ray spectroscopy and scattering experiments, which so far have not been possible on a laboratory scale. Excellent data quality, combined with experimental flexibility, renders our approach a true alternative to large-scale facilities, such as synchrotron-radiation sources and free-electron lasers.
Collapse
Affiliation(s)
- Martin Borchert
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Julia Braenzel
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Richard Gnewkow
- Helmholtz-Zentrum Berlin, 12489 Berlin, Germany
- Technische Universität Berlin, Institut für Optik und Atomare Physik, 10623 Berlin, Germany
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), 10623 Berlin, Germany
| | - Leonid Lunin
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | | | - Johannes Tümmler
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Ingo Will
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Tino Noll
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Oliver Reichel
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Dirk Rohloff
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | | | - Thomas Krist
- NOB Nano Optics Berlin GmbH, 10627 Berlin, Germany
| | | | - Bastian Pfau
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Stefan Eisebitt
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
- Technische Universität Berlin, Institut für Optik und Atomare Physik, 10623 Berlin, Germany
| | - Holger Stiel
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), 10623 Berlin, Germany
| | - Daniel Schick
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| |
Collapse
|
4
|
Schnack-Petersen AK, Pápai M, Coriani S, Møller KB. A theoretical study of the time-resolved x-ray absorption spectrum of the photoionized BT-1T cation. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:034102. [PMID: 37250952 PMCID: PMC10224778 DOI: 10.1063/4.0000183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
The time-resolved x-ray absorption spectrum of the BT-1T cation (BT-1T+) is theoretically simulated in order to investigate the charge transfer reaction of the system. We employ both trajectory surface hopping and quantum dynamics to simulate the structural evolution over time and the changes in the state populations. To compute the static x-ray absorption spectra (XAS) of the ground and excited states, we apply both the time-dependent density functional theory and the coupled cluster singles and doubles method. The results obtained are in good agreement between the methods. It is, furthermore, found that the small structural changes that occur during the reaction have little effect on the static XAS. Hence, the tr-XAS can be computed based on the state populations determined from a nuclear dynamics simulation and one set of static XAS calculations, utilizing the ground state optimized geometry. This approach can save considerable computational resources, as the static spectra need not to be calculated for all geometries. As BT-1T is a relatively rigid molecule, the outlined approach should only be considered when investigating non-radiative decay processes in the vicinity of the Franck-Condon point.
Collapse
Affiliation(s)
| | | | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Klaus Braagaard Møller
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Chen WK, Cui G, Liu XY. Solvent effects on excited-state relaxation dynamics of paddle-wheel BODIPY-Hexaoxatriphenylene conjugates: Insights from non-adiabatic dynamics simulations. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Understanding the excited state dynamics of donor-acceptor (D-A) complexes is of fundamental importance both experimentally and theoretically. Herein, we have first explored the photoinduced dynamics of a recently synthesized paddle-wheel BODIPY-hexaoxatriphenylene (BODIPY is the abbreviation for BF2-chelated dipyrromethenes) conjugates D-A complexes with the combination of both electronic structure calculations and non-adiabatic dynamics simulations. On the basis of computational results, we concluded that the BODIPY-hexaoxatriphenylene (BH) conjugates will be promoted to the local excited (LE) states of the BODIPY fragments upon excitation, which is followed by the ultrafast exciton transfer from LE state to charge transfer (CT). Instead of the photoinduced electron transfer process proposed in previous experimental work, such a exciton transfer process is accompanied with the photoinduced hole transfer from BODIPY to hexaoxatriphenylene. Additionally, solvent effects are found to play an important role in the photoinduced dynamics. Specifically, the hole transfer dynamics is accelerated by the acetonitrile solvent, which can be ascribed to significant influences of the solvents on the charge transfer states, i.e. the energy gaps between LE and CT excitons are reduced greatly and the non-adiabatic couplings are increased in the meantime. Our present work not only provides valuable insights into the underlying photoinduced mechanism of BH, but also can be helpful for the future design of novel donor-acceptor conjugates with better optoelectronic performance.
Collapse
Affiliation(s)
- Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
6
|
Shakya Y, Inhester L, Arnold C, Welsch R, Santra R. Ultrafast time-resolved x-ray absorption spectroscopy of ionized urea and its dimer through ab initio nonadiabatic dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:034102. [PMID: 34026923 PMCID: PMC8118673 DOI: 10.1063/4.0000076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022]
Abstract
Investigating the early dynamics of chemical systems following ionization is essential for our understanding of radiation damage. However, experimental as well as theoretical investigations are very challenging due to the complex nature of these processes. Time-resolved x-ray absorption spectroscopy on a femtosecond timescale, in combination with appropriate simulations, is able to provide crucial insights into the ultrafast processes that occur upon ionization due to its element-specific probing nature. In this theoretical study, we investigate the ultrafast dynamics of valence-ionized states of urea and its dimer employing Tully's fewest switches surface hopping approach using Koopmans' theorem to describe the ionized system. We demonstrate that following valence ionization through a pump pulse, the time-resolved x-ray absorption spectra at the carbon, nitrogen, and oxygen K-edges reveal rich insights into the dynamics. Excited states of the ionized system give rise to time-delayed blueshifts in the x-ray absorption spectra as a result of electronic relaxation dynamics through nonadiabatic transitions. Moreover, our statistical analysis reveals specific structural dynamics in the molecule that induce time-dependent changes in the spectra. For the urea monomer, we elucidate the possibility to trace effects of specific molecular vibrations in the time-resolved x-ray absorption spectra. For the urea dimer, where ionization triggers a proton transfer reaction, we show how the x-ray absorption spectra can reveal specific details on the progress of proton transfer.
Collapse
|
7
|
Khalili K, Inhester L, Arnold C, Gertsen AS, Andreasen JW, Santra R. Simulation of time-resolved x-ray absorption spectroscopy of ultrafast dynamics in particle-hole-excited 4-(2-thienyl)-2,1,3-benzothiadiazole. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:044101. [PMID: 32665964 PMCID: PMC7340508 DOI: 10.1063/4.0000016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 06/01/2023]
Abstract
To date, alternating co-polymers based on electron-rich and electron-poor units are the most attractive materials to control functionality of organic semiconductor layers in which ultrafast excited-state processes play a key role. We present a computational study of the photoinduced excited-state dynamics of the 4-(2-thienyl)-2,1,3-benzothiadiazole (BT-1T) molecule, which is a common building block in the backbone of π-conjugated polymers used for organic electronics. In contrast to homo-polymer materials, such as oligothiophene, BT-1T has two non-identical units, namely, thiophene and benzothiadiazole, making it attractive for intramolecular charge transfer studies. To gain a thorough understanding of the coupling of excited-state dynamics with nuclear motion, we consider a scenario based on femtosecond time-resolved x-ray absorption spectroscopy using an x-ray free-electron laser in combination with a synchronized ultraviolet femtosecond laser. Using Tully's fewest switches surface hopping approach in combination with excited-state calculations at the level of configuration interaction singles, we calculate the gas-phase x-ray absorption spectrum at the carbon and nitrogen K edges as a function of time after excitation to the lowest electronically excited state. The results of our time-resolved calculations exhibit the charge transfer driven by non-Born-Oppenheimer physics from the benzothiadiazole to thiophene units during relaxation to the ground state. Furthermore, our ab initio molecular dynamics simulations indicate that the excited-state relaxation processes involve bond elongation in the benzothiadiazole unit as well as thiophene ring puckering at a time scale of 100 fs. We show that these dynamical trends can be identified from the time-dependent x-ray absorption spectrum.
Collapse
Affiliation(s)
- Khadijeh Khalili
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | | | | | - Anders S. Gertsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | - Jens Wenzel Andreasen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej 310, 2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
8
|
Loh ZH, Doumy G, Arnold C, Kjellsson L, Southworth SH, Al Haddad A, Kumagai Y, Tu MF, Ho PJ, March AM, Schaller RD, Bin Mohd Yusof MS, Debnath T, Simon M, Welsch R, Inhester L, Khalili K, Nanda K, Krylov AI, Moeller S, Coslovich G, Koralek J, Minitti MP, Schlotter WF, Rubensson JE, Santra R, Young L. Observation of the fastest chemical processes in the radiolysis of water. Science 2020; 367:179-182. [DOI: 10.1126/science.aaz4740] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/15/2019] [Indexed: 01/01/2023]
Abstract
Elementary processes associated with ionization of liquid water provide a framework for understanding radiation-matter interactions in chemistry and biology. Although numerous studies have been conducted on the dynamics of the hydrated electron, its partner arising from ionization of liquid water, H2O+, remains elusive. We used tunable femtosecond soft x-ray pulses from an x-ray free electron laser to reveal the dynamics of the valence hole created by strong-field ionization and to track the primary proton transfer reaction giving rise to the formation of OH. The isolated resonance associated with the valence hole (H2O+/OH) enabled straightforward detection. Molecular dynamics simulations revealed that the x-ray spectra are sensitive to structural dynamics at the ionization site. We found signatures of hydrated-electron dynamics in the x-ray spectrum.
Collapse
Affiliation(s)
- Z.-H. Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - G. Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - C. Arnold
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - L. Kjellsson
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
- European XFEL GmbH, Schenefeld, Germany
| | - S. H. Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - A. Al Haddad
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Y. Kumagai
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - M.-F. Tu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - P. J. Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - A. M. March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - R. D. Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - M. S. Bin Mohd Yusof
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - T. Debnath
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - M. Simon
- Sorbonne Université and CNRS, Laboratoire de Chemie Physique-Matière et Rayonnement, LCPMR, F-750005 Paris, France
| | - R. Welsch
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - L. Inhester
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
| | - K. Khalili
- Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde, Denmark
| | - K. Nanda
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - A. I. Krylov
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - S. Moeller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - G. Coslovich
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - J. Koralek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - M. P. Minitti
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - W. F. Schlotter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - J.-E. Rubensson
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - R. Santra
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - L. Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
- Department of Physics and James Franck Institute, University of Chicago, Chicago, IL, USA
| |
Collapse
|