1
|
Sun S, Yao H, Pan J, Xian Z. The bonded interfacial layer structure of α-Al2O3 (0001)/water at different pH values studied by sum frequency vibrational spectroscopy. J Chem Phys 2024; 161:214708. [PMID: 39641355 DOI: 10.1063/5.0235695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Oxide/water interfaces are ubiquitous, with alumina/water drawing particular interest due to its environmental and industrial applications. Understanding the interfacial structure at the molecular level is crucial for many physical and chemical processes occurring there. However, the exact structure of interfacial H-bonded network at different pH values remains unclear. Here, sum-frequency vibrational spectroscopy in the OH stretch region was employed to study α-Al2O3 (0001)/water interface at different pH values, while suppressing the contribution of the diffusion layer by adding salts. The experimental results revealed although the variation of pH can charge the surface, it has little impact on the structure of the bonded interfacial layer (BIL). The interaction between alumina and water is mainly governed by weak hydrogen bonds. Furthermore, the templating effect of α-Al2O3 (0001) on the interfacial H-bonded network was observed, with the O-H stretch mode of ∼3430 cm-1 exhibiting anisotropy consistent with the (0001) surface symmetry. These findings indicate that the BIL structure on Al2O3 (0001) is predominantly influenced by the surface atom configuration, and the effect of charge changes induced by pH on the BIL structure is negligible.
Collapse
Affiliation(s)
- Shumei Sun
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| | - Huanzhen Yao
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Jiabao Pan
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Zhenzhe Xian
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Ojha D, Penschke C, Saalfrank P. Vibrational dynamics and spectroscopy of water at porous g-C 3N 4 and C 2N surfaces. Phys Chem Chem Phys 2024; 26:11084-11093. [PMID: 38530253 DOI: 10.1039/d3cp05964b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Porous graphitic materials containing nitrogen are promising catalysts for photo(electro)chemical reactions, notably water splitting, but can also serve as "molecular sieves". Nitrogen increases the hydrophilicity of the graphite parent material, among other effects. A deeper understanding of how water interacts with C- and N-containing layered materials, if and which differences exist between materials with different N content and pore size, and what the role of water dynamics is - a prerequsite for catalysis and sieving - is largely absent, however. Vibrational spectroscopy can answer some of these questions. In this work, the vibrational dynamics and spectroscopy of deuterated water molecules (D2O) mimicking dense water layers at room temperature on the surfaces of two different C/N-based materials with different N content and pore size, namely graphitic C3N4 (g-C3N4) and C2N, are studied using ab initio molecular dynamics (AIMD). In particular, time-dependent vibrational sum frequency generation (TD-vSFG) spectra of the OD modes and also time-averaged vSFG spectra and OD frequency distributions are computed. This allows us to distinguish "free" (dangling) OD bonds from OD bonds that are bound in a H-bonded water network or at the surface - with subtle differences between the two surfaces and also to a pure water/air interface. It is found that the temporal decay of OD modes is very similar on both surfaces with a correlation time near 4 ps. In contrast, TD-vSFG spectra reveal that the interconversion time from "bonded" to "free" OD bonds is about 8 ps for water on C2N and thus twice as long as for g-C3N4, demonstrating a propensity of the former material to stabilize bonded OD bonds.
Collapse
Affiliation(s)
- Deepak Ojha
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany.
| | - Christopher Penschke
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany.
| | - Peter Saalfrank
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
3
|
Zhang X, Arges CG, Kumar R. Computational Investigations of the Water Structure at the α-Al 2O 3(0001)-Water Interface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15600-15610. [PMID: 37593231 PMCID: PMC10428097 DOI: 10.1021/acs.jpcc.3c03243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Indexed: 08/19/2023]
Abstract
The α-Al2O3(0001)-water interface is investigated using ab initio molecular dynamics (AIMD) simulations. The spectral signatures of the vibrational sum frequency generation (vSFG) spectra of OH stretching mode for water molecules at the interface are related to the interfacial water orientation, hydrogen bond network, and water dissociation process at different water/alumina interfaces. Significant differences are found between alumina surfaces at different hydroxylation levels, namely, Al-terminated and O-terminated α-Al2O3(0001). By calculating the vibrational sum frequency generation spectrum and its imaginary component from AIMD results, the structure of interfacial waters as well as the termination of alumina slab are related to the spectral signatures of vSFG data.
Collapse
Affiliation(s)
- Xiaoliu Zhang
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United
States
| | - Christopher G. Arges
- Department
of Chemical Engineering, Pennsylvania State
University, University Park, Pennsylvania 16802, United States
| | - Revati Kumar
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United
States
| |
Collapse
|
4
|
Das B, Chandra A. Effects of Stearyl Alcohol Monolayer on the Structure, Dynamics and Vibrational Sum Frequency Generation Spectroscopy of Interfacial Water. Phys Chem Chem Phys 2022; 24:7374-7386. [DOI: 10.1039/d1cp04944e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure, dynamics and vibrational spectroscopy of water surface covered by a monolayer of stearyl alcohol (STA) are investigated by means of molecular dynamics simulations and vibrational sum frequency generation...
Collapse
|
5
|
Manzhos S, Ihara M. Computational vibrational spectroscopy of molecule-surface interactions: what is still difficult and what can be done about it. Phys Chem Chem Phys 2022; 24:15158-15172. [DOI: 10.1039/d2cp01389d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactions of molecules with solid surfaces are responsible for key functionalities for a range of currently actively pursued technologies, including heterogeneous catalysis for synthesis or decomposition of molecules, sensitization, surface...
Collapse
|
6
|
Melani G, Nagata Y, Saalfrank P. Vibrational energy relaxation of interfacial OH on a water-covered α-Al 2O 3(0001) surface: a non-equilibrium ab initio molecular dynamics study. Phys Chem Chem Phys 2021; 23:7714-7723. [PMID: 32857089 DOI: 10.1039/d0cp03777j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vibrational relaxation of adsorbates is a sensitive tool to probe energy transfer at gas/solid and liquid/solid interfaces. The most direct way to study relaxation dynamics uses time-resolved spectroscopy. Here we report on a non-equilibrium ab initio molecular dynamics (NE-AIMD) methodology to model vibrational relaxation of OH vibrations on a hydroxylated, water-covered α-Al2O3(0001) surface. In our NE-AIMD approach, after exciting selected O-H bonds their coupling to surface phonons and to the water adlayer is analyzed in detail, by following both the energy flow in time, as well as the time-evolution of Vibrational Density of States (VDOS) curves. The latter are obtained from Time-dependent Correlation Functions (TCFs) and serve as prototypical, generic representatives of time-resolved vibrational spectra. As most important results, (i) we find a few-picosecond lifetime of the excited modes and (ii) identify both hydrogen-bonded aluminols and water molecules in the adsorbed water layer as main dissipative channels, while the direct coupling to Al2O3 surface phonons is of minor importance on the timescales of interest. Our NE-AIMD/TCF methodology is powerful for complex adsorbate systems, in principle even reacting ones, and opens a way towards time-resolved vibrational spectroscopy.
Collapse
Affiliation(s)
- Giacomo Melani
- Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
7
|
Tang F, Ohto T, Sun S, Rouxel JR, Imoto S, Backus EHG, Mukamel S, Bonn M, Nagata Y. Molecular Structure and Modeling of Water-Air and Ice-Air Interfaces Monitored by Sum-Frequency Generation. Chem Rev 2020; 120:3633-3667. [PMID: 32141737 PMCID: PMC7181271 DOI: 10.1021/acs.chemrev.9b00512] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 12/26/2022]
Abstract
From a glass of water to glaciers in Antarctica, water-air and ice-air interfaces are abundant on Earth. Molecular-level structure and dynamics at these interfaces are key for understanding many chemical/physical/atmospheric processes including the slipperiness of ice surfaces, the surface tension of water, and evaporation/sublimation of water. Sum-frequency generation (SFG) spectroscopy is a powerful tool to probe the molecular-level structure of these interfaces because SFG can specifically probe the topmost interfacial water molecules separately from the bulk and is sensitive to molecular conformation. Nevertheless, experimental SFG has several limitations. For example, SFG cannot provide information on the depth of the interface and how the orientation of the molecules varies with distance from the surface. By combining the SFG spectroscopy with simulation techniques, one can directly compare the experimental data with the simulated SFG spectra, allowing us to unveil the molecular-level structure of water-air and ice-air interfaces. Here, we present an overview of the different simulation protocols available for SFG spectra calculations. We systematically compare the SFG spectra computed with different approaches, revealing the advantages and disadvantages of the different methods. Furthermore, we account for the findings through combined SFG experiments and simulations and provide future challenges for SFG experiments and simulations at different aqueous interfaces.
Collapse
Affiliation(s)
- Fujie Tang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Tatsuhiko Ohto
- Graduate
School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shumei Sun
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Jérémy R. Rouxel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Sho Imoto
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Ellen H. G. Backus
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Physics, State Key Laboratory of Surface Physics and Key Laboratory
of Micro- and Nano-Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| |
Collapse
|