1
|
Payne Torres LI, Schouten AO, Sager-Smith LM, Mazziotti DA. A Molecular Perspective of Exciton Condensation from Particle-Hole Reduced Density Matrices. J Phys Chem Lett 2025:1352-1366. [PMID: 39878146 DOI: 10.1021/acs.jpclett.4c03198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Exciton condensation, the Bose-Einstein-like condensation of quasibosonic particle-hole pairs, has been the subject of much theoretical and experimental interest and holds promise for ultraenergy-efficient technologies. Recent advances in bilayer systems, such as transition metal dichalcogenide heterostructures, have brought us closer to the experimental realization of exciton condensation without the need for high magnetic fields. In this perspective, we explore progress toward understanding and realizing exciton condensation, with a particular focus on the characteristic theoretical signature of exciton condensation: an eigenvalue greater than one in the particle-hole reduced density matrix, which signifies off-diagonal long-range order. This metric bridges the gap between theoretical predictions and experimental realizations by providing a unifying framework that connects exciton condensation to related phenomena, such as Bose-Einstein condensation and superconductivity. Furthermore, our molecular approach integrates exciton condensation with broader excitonic phenomena, including exciton-related entanglement and correlation, unlocking potential advancements in fields like quantum materials and energy transport. We discuss connections between recent experimental and theoretical work and highlight the discoveries that may arise from approaching exciton condensation from a molecular perspective.
Collapse
Affiliation(s)
- Lillian I Payne Torres
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Anna O Schouten
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - LeeAnn M Sager-Smith
- Department of Chemistry, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - David A Mazziotti
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Zhang J. Quantum state engineering in a five-state chainwise system by generalized coincident pulse technique. J Chem Phys 2024; 161:074107. [PMID: 39145546 DOI: 10.1063/5.0223526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
In this paper, an exact analytical solution is presented for achieving coherent population transfer and creating arbitrary coherent superposition states in a five-state chainwise system by a train of coincident pulses. We show that the solution of a five-state chainwise system can be reduced to an equivalent three-state Λ-type one with the simplest resonant coupling under the assumption of adiabatic elimination together with a requirement of the relation among the four coincident pulses. In this method, the four coincident pulses at each step all have the same time dependence, but with specific magnitudes. The results show that, by using a train of appropriately coincident pulses, this technique not only enables complete population transfer, but also creates any desired coherent superposition between the initial and final states, while the population in all intermediate states is effectively suppressed. Furthermore, this technique can also exhibit a one-way population transfer behavior. The results are of potential interest in applications where high-fidelity multi-state quantum control is essential, e.g., quantum information, atom optics, formation of ultracold molecules, cavity QED, nuclear coherent population transfer, and light transfer in waveguide arrays.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Pant R, Verma PK, Rangi C, Mondal E, Bhati M, Srinivasan V, Wüster S. Universal Measure for the Impact of Adiabaticity on Quantum Transitions. PHYSICAL REVIEW LETTERS 2024; 132:126903. [PMID: 38579224 DOI: 10.1103/physrevlett.132.126903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/25/2024] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
Adiabaticity is crucial for our understanding of complex quantum dynamics and thus for advancing fundamental physics and technology, but its impact cannot yet be quantified in complex but common cases where dynamics is only partially adiabatic, several eigenstates are simultaneously populated and transitions between noneigenstates are of key interest. We construct a universally applicable measure that can quantify the adiabaticity of quantum transitions in an arbitrary basis. Our measure distinguishes transitions that occur due to the adiabatic change of populated system eigenstates from transitions that occur due to beating between several eigenstates and can handle nonadiabatic events. While all quantum dynamics fall within the scope of the measure, we demonstrate its usage and utility through two important material science problems-energy and charge transfer-where adiabaticity could be effected by nuclear motion and its quantification will aid not only in unraveling mechanisms but also in system design, for example, of light harvesting systems.
Collapse
Affiliation(s)
- R Pant
- Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462 066, India
| | - P K Verma
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462 066, India
| | - C Rangi
- Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462 066, India
| | - E Mondal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462 066, India
| | - M Bhati
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462 066, India
| | - V Srinivasan
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462 066, India
| | - S Wüster
- Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
4
|
Breuil G, Mangaud E, Lasorne B, Atabek O, Desouter-Lecomte M. Funneling dynamics in a phenylacetylene trimer: Coherent excitation of donor excitonic states and their superposition. J Chem Phys 2021; 155:034303. [PMID: 34293889 DOI: 10.1063/5.0056351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Funneling dynamics in conjugated dendrimers has raised great interest in the context of artificial light-harvesting processes. Photoinduced relaxation has been explored by time-resolved spectroscopy and simulations, mainly by semiclassical approaches or referring to open quantum systems methods, within the Redfield approximation. Here, we take the benefit of an ab initio investigation of a phenylacetylene trimer, and in the spirit of a divide-and-conquer approach, we focus on the early dynamics of the hierarchy of interactions. We build a simplified but realistic model by retaining only bright electronic states and selecting the vibrational domain expected to play the dominant role for timescales shorter than 500 fs. We specifically analyze the role of the in-plane high-frequency skeletal vibrational modes involving the triple bonds. Open quantum system non-adiabatic dynamics involving conical intersections is conducted by separating the electronic subsystem from the high-frequency tuning and coupling vibrational baths. This partition is implemented within a robust non-perturbative and non-Markovian method, here the hierarchical equations of motion. We will more precisely analyze the coherent preparation of donor states or of their superposition by short laser pulses with different polarizations. In particular, we extend the π-pulse strategy for the creation of a superposition to a V-type system. We study the relaxation induced by the high-frequency vibrational collective modes and the transitory dissymmetry, which results from the creation of a superposition of electronic donor states.
Collapse
Affiliation(s)
- Gabriel Breuil
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Etienne Mangaud
- MSME, Université Gustave Eiffel, UPEC, CNRS, F-77454 Marne-La-Vallée, France
| | | | - Osman Atabek
- Institut des Sciences Moléculaires, Université Paris-Saclay-CNRS, UMR8214, F-91400 Orsay, France
| | | |
Collapse
|
5
|
Janković V, Mančal T. Nonequilibrium steady-state picture of incoherent light-induced excitation harvesting. J Chem Phys 2020; 153:244110. [PMID: 33380098 DOI: 10.1063/5.0029918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We formulate a comprehensive theoretical description of excitation harvesting in molecular aggregates photoexcited by weak incoherent radiation. An efficient numerical scheme that respects the continuity equation for excitation fluxes is developed to compute the nonequilibrium steady state (NESS) arising from the interplay between excitation generation, excitation relaxation, dephasing, trapping at the load, and recombination. The NESS is most conveniently described in the so-called preferred basis in which the steady-state excitonic density matrix is diagonal. The NESS properties are examined by relating the preferred-basis description to the descriptions in the site or excitonic bases. Focusing on a model photosynthetic dimer, we find that the NESS in the limit of long trapping time is quite similar to the excited-state equilibrium in which the stationary coherences originate from the excitation-environment entanglement. For shorter trapping times, we demonstrate how the properties of the NESS can be extracted from the time-dependent description of an incoherently driven but unloaded dimer. This relation between stationary and time-dependent pictures is valid, provided that the trapping time is longer than the decay time of dynamic coherences accessible in femtosecond spectroscopy experiments.
Collapse
Affiliation(s)
- Veljko Janković
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Tomáš Mančal
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| |
Collapse
|
6
|
Janković V, Mančal T. Exact description of excitonic dynamics in molecular aggregates weakly driven by light. J Chem Phys 2020; 153:244122. [PMID: 33380075 DOI: 10.1063/5.0029914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a rigorous theoretical description of excitonic dynamics in molecular light-harvesting aggregates photoexcited by weak-intensity radiation of arbitrary properties. While the interaction with light is included up to the second order, the treatment of the excitation-environment coupling is exact and results in an exact expression for the reduced excitonic density matrix that is manifestly related to the spectroscopic picture of the photoexcitation process. This expression takes fully into account the environmental reorganization processes triggered by the two interactions with light. This is particularly important for slow environments and/or strong excitation-environment coupling. Within the exponential decomposition scheme, we demonstrate how our result can be recast as the hierarchy of equations of motion (HEOM) that explicitly and consistently includes the photoexcitation step. We analytically describe the environmental reorganization dynamics triggered by a delta-like excitation of a single chromophore and demonstrate how our HEOM, in appropriate limits, reduces to the Redfield equations comprising a pulsed photoexcitation and the nonequilibrium Förster theory. We also discuss the relation of our formalism to the combined Born-Markov-HEOM approaches in the case of excitation by thermal light.
Collapse
Affiliation(s)
- Veljko Janković
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Tomáš Mančal
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| |
Collapse
|
7
|
Head-Marsden K, Flick J, Ciccarino CJ, Narang P. Quantum Information and Algorithms for Correlated Quantum Matter. Chem Rev 2020; 121:3061-3120. [PMID: 33326218 DOI: 10.1021/acs.chemrev.0c00620] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Discoveries in quantum materials, which are characterized by the strongly quantum-mechanical nature of electrons and atoms, have revealed exotic properties that arise from correlations. It is the promise of quantum materials for quantum information science superimposed with the potential of new computational quantum algorithms to discover new quantum materials that inspires this Review. We anticipate that quantum materials to be discovered and developed in the next years will transform the areas of quantum information processing including communication, storage, and computing. Simultaneously, efforts toward developing new quantum algorithmic approaches for quantum simulation and advanced calculation methods for many-body quantum systems enable major advances toward functional quantum materials and their deployment. The advent of quantum computing brings new possibilities for eliminating the exponential complexity that has stymied simulation of correlated quantum systems on high-performance classical computers. Here, we review new algorithms and computational approaches to predict and understand the behavior of correlated quantum matter. The strongly interdisciplinary nature of the topics covered necessitates a common language to integrate ideas from these fields. We aim to provide this common language while weaving together fields across electronic structure theory, quantum electrodynamics, algorithm design, and open quantum systems. Our Review is timely in presenting the state-of-the-art in the field toward algorithms with nonexponential complexity for correlated quantum matter with applications in grand-challenge problems. Looking to the future, at the intersection of quantum information science and algorithms for correlated quantum matter, we envision seminal advances in predicting many-body quantum states and describing excitonic quantum matter and large-scale entangled states, a better understanding of high-temperature superconductivity, and quantifying open quantum system dynamics.
Collapse
Affiliation(s)
- Kade Head-Marsden
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Christopher J Ciccarino
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Pant R, Wüster S. Excitation transport in molecular aggregates with thermal motion. Phys Chem Chem Phys 2020; 22:21169-21184. [PMID: 32929422 DOI: 10.1039/d0cp01211d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular aggregates can under certain conditions transport electronic excitation energy over large distances due to dipole-dipole interactions. Here, we explore to what extent thermal motion of entire monomers can guide or enhance this excitation transport. The motion induces changes of aggregate geometry and hence modifies exciton states. Under certain conditions, excitation energy can thus be transported by the aggregate adiabatically, following a certain exciton eigenstate. While such transport is always slower than direct migration through dipole-dipole interactions, we show that transport through motion can yield higher transport efficiencies in the presence of on-site energy disorder than the static counterpart. For this we consider two simple models of molecular motion: (i) longitudinal vibrations of the monomers along the aggregation direction within their inter-molecular binding potential and (ii) torsional motion of planar monomers in a plane orthogonal to the aggregation direction. The parameters and potential shapes used are relevant to dye-molecule aggregates. We employ a quantum-classical method, in which molecules move through simplified classical molecular dynamics, while the excitation transport is treated quantum mechanically using Schrödinger's equation. For both models we find parameter regimes in which the motion enhances excitation transport, however these are more realistic for the torsional scenario, due to the limited motional range in a typical Morse type inter-molecular potential. We finally show that the transport enhancement can be linked to adiabatic quantum dynamics. This transport enhancement through adiabatic motion appears a useful resource to combat exciton trapping by disorder.
Collapse
Affiliation(s)
- Ritesh Pant
- Department of Physics, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal-462066, MP, India.
| | | |
Collapse
|
9
|
Berkelbach TC, Thoss M. Special topic on dynamics of open quantum systems. J Chem Phys 2020; 152:020401. [DOI: 10.1063/1.5142731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Timothy C. Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, USA
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Michael Thoss
- Institute of Physics, Albert-Ludwig University Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| |
Collapse
|