1
|
Wang Y, Zhan S, Hu Y, Chen X, Yin S. Understanding the Formation and Growth of New Atmospheric Particles at the Molecular Level through Laboratory Molecular Beam Experiments. Chempluschem 2024; 89:e202400108. [PMID: 38497136 DOI: 10.1002/cplu.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Atmospheric new particle formation (NPF), which exerts comprehensive implications for climate, air quality and human health, has received extensive attention. From molecule to cluster is the initial and most important stage of the nucleation process of atmospheric new particles. However, due to the complexity of the nucleation process and limitations of experimental characterization techniques, there is still a great uncertainty in understanding the nucleation mechanism at the molecular level. Laboratory-based molecular beam methods can experimentally implement the generation and growth of typical atmospheric gas-phase nucleation precursors to nanoscale clusters, characterize the key physical and chemical properties of clusters such as structure and composition, and obtain a series of their physicochemical parameters, including association rate coefficients, electron binding energy, pickup cross section and pickup probability and so on. These parameters can quantitatively illustrate the physicochemical properties of the cluster, and evaluate the effect of different gas phase nucleation precursors on the formation and growth of atmospheric new particles. We review the present literatures on atmospheric cluster formation and reaction employing the experimental method of laboratory molecular beam. The experimental apparatuses were classified and summarized from three aspects of cluster generation, growth and detection processes. Focus of this review is on the properties of nucleation clusters involving different precursor molecules of water, sulfuric acid, nitric acid and NxOy, respectively. We hope this review will provide a deep insight for effects of cluster physicochemical properties on nucleation, and reveal the formation and growth mechanism of atmospheric new particle at the molecular level.
Collapse
Affiliation(s)
- Yadong Wang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Shiyu Zhan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Yongjun Hu
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, P. R. China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| |
Collapse
|
2
|
M Nair A, Leboucher H, Toucouere L, Zamith S, Joblin C, L'Hermite JM, Marciniak A, Simon A. Diversity of protonated mixed pyrene-water clusters investigated by collision induced dissociation. Phys Chem Chem Phys 2024; 26:5947-5961. [PMID: 38294026 PMCID: PMC10866126 DOI: 10.1039/d3cp05734h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Protonated mixed pyrene-water clusters, (Py)m(H2O)nH+, where m = [1-3] and n = [1-10], are generated using a cryogenic molecular cluster source. Subsequently, the mass-selected mixed clusters undergo controlled collisions with rare gases, and the resulting fragmentation mass spectra are meticulously analyzed to discern distinct fragmentation channels. Notably, protonated water cluster fragments emerge for n ≥ 3, whereas they are absent for n = 1 and 2. The experimental results are complemented by theoretical calculations of structures and energetics for (Py)(H2O)nH+ with n = [1-4]. These calculations reveal a shift in proton localization, transitioning from the pyrene molecule for n = 1 and 2 to water molecules for n ≥ 3. The results support a formation scenario wherein water molecules attach to protonated pyrene PyH+ seeds, and, by extension, to (Py)2H+ and (Py)3H+ seeds. Various isomers are identified, corresponding to potential protonation sites on the pyrene molecule. Protonated polycyclic aromatic hydrocarbons are likely to be formed in cold, dense interstellar clouds and protoplanetary disks due to the high proton affinity of these species. Our findings show that the presence of protonated PAHs in these environments could lead to the formation of water clusters and mixed carbon-water nanograins, having a potential impact on the water cycle in regions of planet formation.
Collapse
Affiliation(s)
- Arya M Nair
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, Université Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 Avenue du Colonel Roche, F-31028 Toulouse, France
| | - Héloïse Leboucher
- Laboratoire de Chimie et Physique Quantiques LCPQ/FERMI, Université Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Lorris Toucouere
- Laboratoire de Chimie et Physique Quantiques LCPQ/FERMI, Université Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Sébastien Zamith
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, Université Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Christine Joblin
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 Avenue du Colonel Roche, F-31028 Toulouse, France
| | - Jean-Marc L'Hermite
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, Université Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Alexandre Marciniak
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, Université Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Aude Simon
- Laboratoire de Chimie et Physique Quantiques LCPQ/FERMI, Université Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
3
|
Rapacioli M, Buey MY, Spiegelman F. Addressing electronic and dynamical evolution of molecules and molecular clusters: DFTB simulations of energy relaxation in polycyclic aromatic hydrocarbons. Phys Chem Chem Phys 2024; 26:1499-1515. [PMID: 37933901 PMCID: PMC10793726 DOI: 10.1039/d3cp02852f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
We present a review of the capabilities of the density functional based Tight Binding (DFTB) scheme to address the electronic relaxation and dynamical evolution of molecules and molecular clusters following energy deposition via either collision or photoabsorption. The basics and extensions of DFTB for addressing these systems and in particular their electronic states and their dynamical evolution are reviewed. Applications to PAH molecules and clusters, carbonaceous systems of major interest in astrochemical/astrophysical context, are reported. A variety of processes are examined and discussed such as collisional hydrogenation, fast collisional processes and induced electronic and charge dynamics, collision-induced fragmentation, photo-induced fragmentation, relaxation in high electronic states, electronic-to-vibrational energy conversion and statistical versus non-statistical fragmentation. This review illustrates how simulations may help to unravel different relaxation mechanisms depending on various factors such as the system size, specific electronic structure or excitation conditions, in close connection with experiments.
Collapse
Affiliation(s)
- Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantique (LCPQ/FERMI), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Maysa Yusef Buey
- Laboratoire de Chimie et Physique Quantique (LCPQ/FERMI), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantique (LCPQ/FERMI), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
4
|
Zamith S, Kassem A, L'Hermite JM, Joblin C, Cuny J. Threshold collision induced dissociation of protonated water clusters. J Chem Phys 2023; 159:184302. [PMID: 37955320 DOI: 10.1063/5.0167551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
We report threshold collision induced dissociation experiments on protonated water clusters thermalized at low temperature for sizes n = 19-23. Fragmentation cross sections are recorded as a function of the collision energy and analyzed with a statistical model. This model allows us to account for dissociation cascades and provides values for the dissociation energies of each cluster. These values, averaging around 0.47 eV, are in good agreement with theoretical predictions at various levels of theory. Furthermore, the dissociation energies show a trend for the n = 21 magic and n = 22 anti-magic numbers relative to their neighbours, which is also in agreement with theory. These results provide further evidence to resolve the disagreement between previously published experimental values. A careful quantitative treatment of cascade dissociation in this model introduces interdependence between the dissociation energies of neighboring sizes, which reduces the number of free fitting parameters and improves both reliability and uncertainties on absolute dissociation energies deduced from experiments.
Collapse
Affiliation(s)
- Sébastien Zamith
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, Université Toulouse III - Paul Sabatier, CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Ali Kassem
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, Université Toulouse III - Paul Sabatier, CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Jean-Marc L'Hermite
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, Université Toulouse III - Paul Sabatier, CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Christine Joblin
- Institut de Recherche en Astrophysique et Planétologie (IRAP), UMR5277, Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 avenue du Colonel Roche, F-31028 Toulouse, France
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques LCPQ/FERMI, Université Toulouse III - Paul Sabatier, CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
5
|
Leboucher H, Simon A, Rapacioli M. Structures and stabilities of PAH clusters solvated by water aggregates: The case of the pyrene dimer. J Chem Phys 2023; 158:114308. [PMID: 36948831 DOI: 10.1063/5.0139482] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Although clusters made of polycyclic aromatic hydrocarbon and water monomers are relevant objects in both atmospheric and astrophysical science, little is known about their energetic and structural properties. In this work, we perform global explorations of the potential energy landscapes of neutral clusters made of two pyrene units and one to ten water molecules using a density-functional-based tight-binding (DFTB) potential followed by local optimizations at the density-functional theory level. We discuss the binding energies with respect to various dissociation channels. It shows that cohesion energies of the water clusters interacting with a pyrene dimer are larger than those of the pure water clusters, reaching for the largest clusters an asymptotic limit similar to that of pure water clusters and that, although the hexamer and octamer can be considered magic numbers for isolated water clusters, it is not the case anymore when they are interacting with a pyrene dimer. Ionization potentials are also computed by making use of the configuration interaction extension of DFTB, and we show that in cations, the charge is mostly carried by the pyrene molecules.
Collapse
Affiliation(s)
- H Leboucher
- Laboratoire de Chimie et Physique Quantiques LCPQ/FERMI, UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - A Simon
- Laboratoire de Chimie et Physique Quantiques LCPQ/FERMI, UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - M Rapacioli
- Laboratoire de Chimie et Physique Quantiques LCPQ/FERMI, UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
6
|
Garcia GA, Dontot L, Rapacioli M, Spiegelman F, Bréchignac P, Nahon L, Joblin C. Electronic effects in the dissociative ionisation of pyrene clusters. Phys Chem Chem Phys 2023; 25:4501-4510. [PMID: 36722859 DOI: 10.1039/d2cp05679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We present a combined experimental and theoretical study on the dissociative ionisation of clusters of pyrene. We measured the experimental appearance energies in the photon energy range 7.2-12.0 eV of the fragments formed from neutral monomer loss for clusters up to the hexamer. The results obtained show a deviation from statistical dissociation. From electronic structure calculations, we suggest that the role of excited states must be considered in the interpretation of experimental results, even in these relatively large systems. Non-statistical effects in the dissociative ionization process of polycyclic aromatic hydrocarbon (PAH) clusters may have an impact on the assessment of mechanisms determining the stability of these clusters in astrophysical environments.
Collapse
Affiliation(s)
- Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, Départamentale 128, 91190 Saint Aubin, France.
| | - Léo Dontot
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse III - Paul Sabatier, CNRS, CNES, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse, France.,Laboratoire de Chimie et Physique Quantiques, FERMI, Université de Toulouse III - Paul Sabatier, CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques, FERMI, Université de Toulouse III - Paul Sabatier, CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantiques, FERMI, Université de Toulouse III - Paul Sabatier, CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Philippe Bréchignac
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, Départamentale 128, 91190 Saint Aubin, France.
| | - Christine Joblin
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse III - Paul Sabatier, CNRS, CNES, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse, France
| |
Collapse
|
7
|
Zamith S, Kassem A, L'Hermite JM, Joblin C. Water Attachment onto Size-Selected Cationic Pyrene Clusters. J Phys Chem A 2022; 126:3696-3707. [PMID: 35670699 DOI: 10.1021/acs.jpca.2c02195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report measurements of the attachment rates of water molecules onto mass-selected cationic pyrene clusters for size from n = 4 to 13 pyrene units and for different collision energies. Comparison of the attachment rates with the collision rates measured in collision-induced dissociation experiments provides access to the values of the sticking coefficient. The strong dependence of the attachment rates on size and collision energy is rationalized through a model in which we use a Langevin-type collision rate and adjust on experimental data the statistical dissociation rate of the water molecule from the cluster after attachment. This allows us to extrapolate our results to the conditions of isolation and long time scales encountered in astrophysical environments.
Collapse
Affiliation(s)
- Sébastien Zamith
- Laboratoire Collision Agrégats Réactivité (LCAR/IRSAMC), UMR5589, Université de Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Ali Kassem
- Laboratoire Collision Agrégats Réactivité (LCAR/IRSAMC), UMR5589, Université de Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.,Institut de Recherche en Astrophysique et Planétologie (IRAP), UMR5277, Université de Toulouse III - Paul Sabatier, CNRS, CNES, 9 avenue du Colonel Roche, F-31028 Toulouse, France
| | - Jean-Marc L'Hermite
- Laboratoire Collision Agrégats Réactivité (LCAR/IRSAMC), UMR5589, Université de Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Christine Joblin
- Institut de Recherche en Astrophysique et Planétologie (IRAP), UMR5277, Université de Toulouse III - Paul Sabatier, CNRS, CNES, 9 avenue du Colonel Roche, F-31028 Toulouse, France
| |
Collapse
|
8
|
Loukhovitski BI, Pelevkin AV, Sharipov AS. Toward size-dependent thermodynamics of nanoparticles from quantum chemical calculations of small atomic clusters: a case study of (B 2O 3) n. Phys Chem Chem Phys 2022; 24:13130-13148. [PMID: 35587125 DOI: 10.1039/d2cp01672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a method for obtaining canonical partition functions and, accordingly, temperature-dependent thermodynamics of arbitrary-sized (nano) particles from electronic structure calculations of the corresponding small size atomic clusters. The guiding idea here is to extrapolate the basic properties underlying the thermochemistry of clusters (electronic energies, rotational constants, and vibrational frequencies) rather than the thermodynamic functions themselves. The thus obtained scaling dependences for these basic properties expressed in a simple analytical form provide an efficient tool for fast evaluation of the size-selected thermochemical data for particles of any nuclearity. To exemplify the performance of the methodology, neutral stoichiometric boron oxide clusters are considered. To this end, the geometry and various physical properties of the energetically lowest-lying (B2O3)n (n = 1,…,8) structures are found using density functional theory and the authors' multistage hierarchical procedure customized for global optimization of quite large cluster structures. With these data and based on the physically consistent scaling regularities for the principal cluster properties, the size-selected thermodynamic functions of boron oxide particles in the gas phase, such as enthalpy, entropy, and specific heat capacity, are derived. The variation of these characteristics with increasing cluster size is discussed in detail as well. To facilitate handling of the temperature and size dependences we have found here in further chemical kinetic and equilibrium modeling, the tabulated thermodynamic functions of interest are fitted for n = 1,…,1000 to the standard seven-parameter Chemkin polynomials.
Collapse
Affiliation(s)
- Boris I Loukhovitski
- Central Institute of Aviation Motors, Aviamotornaya 2, Moscow 111116, Russia. .,Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg. 2, Moscow 125412, Russia
| | - Alexey V Pelevkin
- Central Institute of Aviation Motors, Aviamotornaya 2, Moscow 111116, Russia. .,Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova 38, Moscow 119991, Russia
| | - Alexander S Sharipov
- Central Institute of Aviation Motors, Aviamotornaya 2, Moscow 111116, Russia. .,Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg. 2, Moscow 125412, Russia
| |
Collapse
|
9
|
Bernard J, Al-Mogeeth A, Martin S, Montagne G, Joblin C, Dontot L, Spiegelman F, Rapacioli M. Experimental and theoretical study of photo-dissociation spectroscopy of pyrene dimer radical cations stored in a compact electrostatic ion storage ring. Phys Chem Chem Phys 2021; 23:6017-6028. [PMID: 33667290 DOI: 10.1039/d0cp05779g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we present an experimental and theoretical study of the photo-dissociation of free-flying dimer radical cations of pyrene (C16H10)2+. Experimentally, the dimers were produced in the plasma of an electron cyclotron resonance ion source and stored in an electrostatic ion storage ring, the Mini-Ring for times up to 10 ms and the photo-dissociation spectrum was recorded in the 400 to 2000 nm range. Two broad absorption bands were observed at 550 (2.25 eV) and 1560 nm (0.79 eV), respectively. Theoretical simulations of the absorption spectrum as a function of the temperature were performed using the Density Functional based Tight Binding approach within the Extended Configuration Interaction scheme (DFTB-EXCI) to determine the electronic structure. The simulation involved all excited electronic states correlated asymptotically with the five lowest excited states D1-D5 of the monomer cation and a Monte Carlo exploration of the electronic ground state potential energy surface. The simulations exhibit three major bands at 1.0, 2.1 and 2.8 eV respectively. They allow assigning the experimental band at 1560 nm to absorption by the charge resonance (CR) excited state correlated with the ground state of the monomer D0. The band at 550 nm is tentatively attributed to dimer states correlated with excited states D2-D4, in the monomer cation. Simulations also show that the CR band broadens and shifts towards longer wavelength with increasing temperature. It results from the dependence on the geometry of the energy gap between the ground state and the lowest excited state. The comparison of the experimental spectrum with theoretical spectra at various temperatures allows us to estimate the temperature of the stored (C16H10)2+ in the 300-400 K range, which is also in line with the expected temperatures of the ions deduced from the analysis of the natural decay curve.
Collapse
Affiliation(s)
- J Bernard
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France.
| | - A Al-Mogeeth
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France.
| | - S Martin
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France.
| | - G Montagne
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France.
| | - C Joblin
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse (UPS), CNRS, CNES, 9 Avenue du Colonel Roche, F-31028 Toulouse, France
| | - L Dontot
- Laboratoire de Chimie et de Physique Quantiques (LCPQ), IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - F Spiegelman
- Laboratoire de Chimie et de Physique Quantiques (LCPQ), IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - M Rapacioli
- Laboratoire de Chimie et de Physique Quantiques (LCPQ), IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
10
|
Fárník M, Fedor J, Kočišek J, Lengyel J, Pluhařová E, Poterya V, Pysanenko A. Pickup and reactions of molecules on clusters relevant for atmospheric and interstellar processes. Phys Chem Chem Phys 2021; 23:3195-3213. [PMID: 33524089 DOI: 10.1039/d0cp06127a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this perspective, we review experiments with molecules picked up on large clusters in molecular beams with the focus on the processes in atmospheric and interstellar chemistry. First, we concentrate on the pickup itself, and we discuss the pickup cross sections. We measure the uptake of different atmospheric molecules on mixed nitric acid-water clusters and determine the accommodation coefficients relevant for aerosol formation in the Earth's atmosphere. Then the coagulation of the adsorbed molecules on the clusters is investigated. In the second part of this perspective, we review examples of different processes triggered by UV-photons or electrons in the clusters with embedded molecules. We start with the photodissociation of hydrogen halides and Freon CF2Cl2 on ice nanoparticles in connection with the polar stratospheric ozone depletion. Next, we mention reactions following the excitation and ionization of the molecules adsorbed on clusters. The first ionization-triggered reaction observed between two different molecules picked up on the cluster was the proton transfer between methanol and formic acid deposited on large argon clusters. Finally, negative ion reactions after slow electron attachment are illustrated by two examples: mixed nitric acid-water clusters, and hydrogen peroxide deposited on large ArN and (H2O)N clusters. The selected examples are discussed from the perspective of the atmospheric and interstellar chemistry, and several future directions are proposed.
Collapse
Affiliation(s)
- Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Dontot L, Spiegelman F, Zamith S, Rapacioli M. Dependence upon charge of the vibrational spectra of small Polycyclic Aromatic Hydrocarbon clusters: the example of pyrene. THE EUROPEAN PHYSICAL JOURNAL. D, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 2020; 74:216. [PMID: 33597829 PMCID: PMC7116754 DOI: 10.1140/epjd/e2020-10081-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/18/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Infrared spectra are computed for neutral and cationic clusters of Polycyclic Aromatic Hydrocarbon clusters, namely( C 16 H 10 ) n = 1 , 4 ( 0 / + ) , using the Density Functional based Tight Binding scheme combined with a Configuration Interaction scheme (DFTB-CI) in the double harmonic approximation. Cross-comparison is carried out with DFT and simple DFTB. Similarly to the monomer cation, the IR spectra of cluster cations are characterized by a depletion of the intensity of the CH stretch modes around 3000 cm-1, with a weak revival for n = 3 and 4. The in-plane CCC modes in the region 1400-2000 cm-1 are enhanced while the CH bending modes in the range 700-1000 cm-1 are significantly weakened with respect to the monomer cation, in particular for n = 2. Finally, soft modes corresponding to diedral fluctuations of the monomers within the central stack of the ion structure, possibly mixed with monomer folding, are also observed in the region 70-120 cm-1.
Collapse
Affiliation(s)
- Léo Dontot
- Laboratoire de Chimie et Physique Quantique (LCPQ/IRSAMC), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantique (LCPQ/IRSAMC), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Sébastien Zamith
- Laboratoire Collisions Agrégats Réactivité (LCAR/IRSAMC), UMR5589, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantique (LCPQ/IRSAMC), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
13
|
Chakraborty D, Lischka H, Hase WL. Dynamics of Pyrene-Dimer Association and Ensuing Pyrene-Dimer Dissociation. J Phys Chem A 2020; 124:8907-8917. [DOI: 10.1021/acs.jpca.0c06677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debdutta Chakraborty
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
14
|
Cuny J, Cerda Calatayud J, Ansari N, Hassanali AA, Rapacioli M, Simon A. Simulation of Liquids with the Tight-Binding Density-Functional Approach and Improved Atomic Charges. J Phys Chem B 2020; 124:7421-7432. [PMID: 32696649 DOI: 10.1021/acs.jpcb.0c04167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Theoretical description of liquids, especially liquid water, is an ongoing subject with important implications in various domains such as homogeneous catalysis; solvation of molecular, ionic, and biomolecular species; and reactivity. Various formalisms exist to describe liquids, each one displaying its own balance between accuracy and computational cost that defines its range of applications. The present article revisits the ability of the density-functional-based tight-binding (SCC-DFTB) approach to model liquids by focusing on liquid water and liquid benzene under ambient conditions. To do so, we benchmark a recent correction for the SCC-DFTB atomic charges that allows for a drastic improvement of the pair radial distribution functions of liquid water as compared to both experimental data and density-functional theory results performed in the generalized-gradient approximation. We also report the coupling of the deMonNano and i-PI codes to perform path-integral molecular dynamics. This allows us to rationalize the impact of nuclear quantum effects on the SCC-DFTB description of liquid water. This study evidences the rather good ability of SCC-DFTB to describe liquid water and liquid benzene. As the first example of application, we also present results for a benzene molecule solvated in water with the perspectives of further studies devoted to solvent/water interfaces.
Collapse
Affiliation(s)
- Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques (LCPQ), Université de Toulouse III [UPS] and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Jesus Cerda Calatayud
- Laboratoire de Chimie et Physique Quantiques (LCPQ), Université de Toulouse III [UPS] and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Narjes Ansari
- The Abdus Salam International Center for Theoretical Physics, Condensed Matter and Statistical Physics Section, Strada Costiera 11, 34151 Trieste, Italy.,Department of Chemistry and Applied Biosciences, ETH Zurich, 3 c/o USI Campus, Via Giuseppe Buffi13, 6900 Lugano, Switzerland.,Facoltà di informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Ali A Hassanali
- The Abdus Salam International Center for Theoretical Physics, Condensed Matter and Statistical Physics Section, Strada Costiera 11, 34151 Trieste, Italy
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques (LCPQ), Université de Toulouse III [UPS] and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Aude Simon
- Laboratoire de Chimie et Physique Quantiques (LCPQ), Université de Toulouse III [UPS] and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
15
|
Zamith S, L’Hermite JM, Dontot L, Zheng L, Rapacioli M, Spiegelman F, Joblin C. Threshold collision induced dissociation of pyrene cluster cations. J Chem Phys 2020; 153:054311. [PMID: 32770931 PMCID: PMC7116296 DOI: 10.1063/5.0015385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report threshold collision induced dissociation experiments on cationic pyrene clusters, for sizes n = 2-6. Fragmentation cross sections are recorded as a function of the collision energy and analyzed with a statistical model. This model can account for the dissociation cascades and provides values for the dissociation energies. These values, of the order of 0.7 eV-1 eV, are in excellent agreement with those previously derived from thermal evaporation. They confirm the charge resonance stability enhancement predicted by theoretical calculations. In addition, remarkable agreement is obtained with theoretical predictions for the two smaller sizes n = 2 and 3. For the larger sizes, the agreement remains good, although the theoretical values obtained for the most stable structures are systematically higher by 0.2 eV. This offset could be attributed to approximations in the calculations. Still, there is an indication in the results of an incomplete description of the role of isomerization and/or direct dissociation upon collisions. Finally, by-product clusters containing dehydrogenated species are found to dissociate at energies comparable to the non-dehydrogenated ones, which shows no evidence for covalent bonds within the clusters.
Collapse
Affiliation(s)
- Sébastien Zamith
- Laboratoire Collision Agrégats Réactivité (LCAR/IRSAMC), UMR5589, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Jean-Marc L’Hermite
- Laboratoire Collision Agrégats Réactivité (LCAR/IRSAMC), UMR5589, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Léo Dontot
- Laboratoire de Chimie et Physique Quantique (LCPQ/IRSAMC), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Linjie Zheng
- Laboratoire de Chimie et Physique Quantique (LCPQ/IRSAMC), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantique (LCPQ/IRSAMC), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantique (LCPQ/IRSAMC), UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Christine Joblin
- Institut de Recherche en Astrophysique et Planétologie (IRAP), UMR5277, Université de Toulouse (UPS) and CNRS, 9 avenue du Colonel Roche, F-31028 Toulouse, France
| |
Collapse
|
16
|
Spiegelman F, Tarrat N, Cuny J, Dontot L, Posenitskiy E, Martí C, Simon A, Rapacioli M. Density-functional tight-binding: basic concepts and applications to molecules and clusters. ADVANCES IN PHYSICS: X 2020; 5:1710252. [PMID: 33154977 PMCID: PMC7116320 DOI: 10.1080/23746149.2019.1710252] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023] Open
Abstract
The scope of this article is to present an overview of the Density Functional based Tight Binding (DFTB) method and its applications. The paper introduces the basics of DFTB and its standard formulation up to second order. It also addresses methodological developments such as third order expansion, inclusion of non-covalent interactions, schemes to solve the self-interaction error, implementation of long-range short-range separation, treatment of excited states via the time-dependent DFTB scheme, inclusion of DFTB in hybrid high-level/low level schemes (DFT/DFTB or DFTB/MM), fragment decomposition of large systems, large scale potential energy landscape exploration with molecular dynamics in ground or excited states, non-adiabatic dynamics. A number of applications are reviewed, focusing on -(i)- the variety of systems that have been studied such as small molecules, large molecules and biomolecules, bare orfunctionalized clusters, supported or embedded systems, and -(ii)- properties and processes, such as vibrational spectroscopy, collisions, fragmentation, thermodynamics or non-adiabatic dynamics. Finally outlines and perspectives are given.
Collapse
Affiliation(s)
- Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Nathalie Tarrat
- CEMES, Université de Toulouse (UPS), CNRS, UPR8011, Toulouse, Toulouse, France
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Leo Dontot
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Evgeny Posenitskiy
- Laboratoire Collisions Agrégats et Réactivité LCAR/IRSAMC, UMR5589, Université de Toulouse (UPS) and CNRS, Toulouse, France
| | - Carles Martí
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
- Laboratoire de Chimie, UMR5182, Ecole Normale Supérieure de Lyon, Université de Lyon and CNRS, Lyon, France
| | - Aude Simon
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| |
Collapse
|