1
|
Schulz T, Marian CM. Simulating the full spin manifold of triplet-pair states in a series of covalently linked TIPS-pentacenes. J Comput Chem 2024; 45:2727-2738. [PMID: 39139132 DOI: 10.1002/jcc.27475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Combined density functional theory and multireference configuration interaction methods have been used to elucidate singlet fission (SF) pathways and mechanisms in three regioisomers of side-on linked pentacene dimers. In addition to the optically bright singlets (S 1 and S 2 ) and singly excited triplets (T 1 and T 2 ), the full spin manifold of multiexcitonic triplet-pair states ( 1 ME, 3 ME, 5 ME) has been considered. In the ortho- and para-regioisomers, the 1 ME and S 1 potentials intersect upon geometry relaxation of the S 1 excitation. In the meta-regioisomer, the crossing occurs upon delocalization of the optically bright excitation. The energetic accessibility of these conical intersections and the absence of low-lying charge-transfer states suggests a direct SF mechanism, assisted by charge-resonance effects in the 1 ME state. While the 5 ME state does not appear to play a role in the SF mechanism of the ortho- and para-regioisomers, its participation in the disentanglement of the triplet pair is conceivable in the meta-regioisomer.
Collapse
Affiliation(s)
- Timo Schulz
- Institute of Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Goyal S, Reddy SR. Investigation of excited states of BODIPY derivatives and non-orthogonal dimers from the perspective of singlet fission. Phys Chem Chem Phys 2024; 26:26398-26408. [PMID: 39390812 DOI: 10.1039/d4cp02656j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
We report state of the art electronic structure calculations RICC2 and XMCQDPT of BODIPY nonorthogonal dimers to understand the photophysical processes from the intramolecular singlet fission (iSF) perspective. We have calculated singlet, triplet and quintet states at the XMCQDPT(8,8)/cc-pVDZ level of theory and diabatic singlet states at the XMCQDPT(4,4)/cc-pVDZ level of theory. In all the systems studied, charge transfer states (1(CA) and 1(AC)) couple strongly with locally excited (1(S1S0)) and multiexcitonic (1(T1T1)) states. The rates of formation of the multiexcitonic state from the locally excited state are very low on account of large activation energy (E(1(T1T1)) - E(1(S1S0))). A relaxed scan along the torsional angle revealed contrasting results for axial and orthogonal conformers. We proposed a probable mechanism for contrasting photophysical properties of dimers B[3,3] and B[2,8]. We also found that substitution of CN, NH2 and BH2 at meso, β and α positions reduces the energy gap (ΔSF = 2E(T1) - E(S1)) significantly, making iSF a competing process in triplet state generation. Intrigued by the success of the CN group at the meso position in reducing the energy gap, we also studied the azaBODIPY monomer and its derivatives using the same methodology. The iSF is slightly endoergic with ΔSF ∼ 0.2 eV in these systems and iSF may play an important role in their photophysical responses.
Collapse
Affiliation(s)
- Sophiya Goyal
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India.
| | - S Rajagopala Reddy
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
3
|
Rani VJ, Kanakati AK, Mahapatra S. Photoionization of aziridine: Nonadiabatic dynamics of the first six low-lying electronic states of the aziridine radical cation. J Chem Phys 2024; 161:094302. [PMID: 39225522 DOI: 10.1063/5.0215910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
In this article, the theoretical photoionization spectroscopy of the aziridine (C2H5N) molecule is investigated. To start with, we have optimized the geometry of this molecule at the neutral electronic ground state at the density functional theory/augmented correlation-consistent polarized valence triple zeta level of theory using the G09 program. The electronic structure calculations were restricted to the first six low-lying electronic states in order to account for the experimental photoelectron spectrum of the C2H5N molecule. The first six low-lying electronic states (X̃2A', Ã2A', B̃2A″, C̃2A″, D̃2A', and Ẽ2A') of the potential energy surfaces (PESs) are calculated by both equation of motion-ionization potential-coupled cluster singles and doubles and multi-configuration quasi-degenerate perturbation theory ab initio quantum chemistry methods along the dimensionless normal displacement coordinates in which multiple conical intersections were established among the considered electronic states. A (6 × 6) model vibronic Hamiltonian is constructed on a diabatic electronic basis, using the symmetry selection rules and Taylor series expansion. The Cs symmetry point group of the aziridine molecule leads to electronic states symmetry of either A' or A″, and these states are close in energy, due to which the same symmetry electronic states avoid each other. To get a smooth diabatic PES, a fourfold diabatization scheme is used, which is implemented in the General Atomic and Molecular Electronic Structure Systems suite of programs. All the parameters used in the diabatic vibronic coupling model Hamiltonian are calculated in terms of the normal modes of vibrational coordinates. Finally, the vibronic model Hamiltonian constructed for the coupled six electronic states is used to solve both time-independent and time-dependent Schrödinger equations using the multi-configuration time-dependent Hartree program module to obtain the dynamical observables. The theoretical vibronic band structure is found to be in good accord with the available experimental results.
Collapse
Affiliation(s)
| | | | - S Mahapatra
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
4
|
Reddy SR, Coto PB, Thoss M. Intramolecular singlet fission: Quantum dynamical simulations including the effect of the laser field. J Chem Phys 2024; 160:194306. [PMID: 38767260 DOI: 10.1063/5.0209546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
In the previous work [Reddy et al., J. Chem. Phys. 151, 044307 (2019)], we have analyzed the dynamics of the intramolecular singlet fission process in a series of prototypical pentacene-based dimers, where the pentacene monomers are covalently bonded to a phenylene linker in ortho, meta, and para positions. The results obtained were qualitatively consistent with the experimental data available, showing an ultrafast population of the multiexcitonic state that mainly takes place via a mediated (superexchange-like) mechanism involving charge transfer and doubly excited states. Our results also highlighted the instrumental role of molecular vibrations in the process as a sizable population of the multiexcitonic state could only be obtained through vibronic coupling. Here, we extend these studies and investigate the effect of the laser field on the dynamics of intramolecular singlet fission by explicitly including the coupling to the laser field in our model. In this manner, and by selectively tuning the laser field to the different low-lying absorption bands of the systems investigated, we analyze the wavelength dependence of the intramolecular singlet fission process. In addition, we have also analyzed how the nature of the initially photoexcited electronic state (either localized or delocalized) affects its dynamics. Altogether, our results provide new insights into the design of intramolecular singlet fission-active molecules.
Collapse
Affiliation(s)
- S Rajagopala Reddy
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Pedro B Coto
- Materials Physics Center (CFM), Spanish National Research Council (CSIC) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Michael Thoss
- Institute of Physics, Albert-Ludwigs University Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Bai Y, Ni W, Sun K, Chen L, Ma L, Zhao Y, Gurzadyan GG, Gelin MF. Plenty of Room on the Top: Pathways and Spectroscopic Signatures of Singlet Fission from Upper Singlet States. J Phys Chem Lett 2022; 13:11086-11094. [PMID: 36417755 DOI: 10.1021/acs.jpclett.2c03053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We investigate dynamic signatures of the singlet fission (SF) process triggered by the excitation of a molecular system to an upper singlet state SN (N > 1) and develop a computational methodology for the simulation of nonlinear spectroscopic signals revealing the SN → TT1 SF in real time. We demonstrate that SF can proceed directly from the upper state SN, bypassing the lowest excited state, S1. We determine the main SN → TT1 reaction pathways and show by computer simulation and spectroscopic measurements that the SN-initiated SF can be faster and more efficient than the traditionally studied S1 → TT1 SF. We claim that the SN → TT1 SF offers novel promising opportunities for engineering SF systems and enhancing SF yields.
Collapse
Affiliation(s)
- Yiting Bai
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wenjun Ni
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kewei Sun
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - Lin Ma
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangdong 510006, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Gagik G Gurzadyan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, Dalian 116024, China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
6
|
Singlet Fission, Polaron Generation and Intersystem Crossing in Hexaphenyl Film. Molecules 2022; 27:molecules27165067. [PMID: 36014308 PMCID: PMC9412266 DOI: 10.3390/molecules27165067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
The ultrafast dynamics of triplet excitons and polarons in hexaphenyl film was investigated by time-resolved fluorescence and femtosecond transient absorption techniques under various excitation photon energies. Two distinct pathways of triplet formation were clearly observed. Long-lived triplet states are populated within 4.5 ps via singlet fission-intersystem crossing, while the short-lived triplet states (1.5 ns) are generated via singlet fission from vibrational electronic states. In the meantime, polarons were formed from hot excitons on a timescale of <30 fs and recombined in ultrafast lifetime (0.37 ps). In addition, the characterization of hexaphenyl film suggests the morphologies of crystal and aggregate to wide applications in organic electronic devices. The present study provides a universally applicable film fabrication in hexaphenyl system towards future singlet fission-based solar cells.
Collapse
|
7
|
Xie X, Troisi A. Evaluating the Electronic Structure of Coexisting Excitonic and Multiexcitonic States in Periodic Systems: Significance for Singlet Fission. J Chem Theory Comput 2021; 18:394-405. [PMID: 34902251 DOI: 10.1021/acs.jctc.1c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Singlet fission (SF) in organic molecular solids is an example of a process that is challenging to describe with the most common electronic structure approaches. It involves optically bright singlet excited states delocalized over many molecules, which could be efficiently treated by density functional theory, and multiexcitonic localized states that have to be studied with wavefunction methods, usually with small clusters considering their expensive computational costs. In this work, we propose a methodology to combine multiconfigurational wavefunction calculations with reduced Hamiltonian to investigate the electronic structure of large clusters or fully periodic systems. The method is applied to the prototypical SF materials tetracene and pentacene. The results allow one to study how states of different natures (excitonic, charge-transfer, and multiexcitonic) coexist and are contaminated by their couplings in large or periodic systems. Novel insights are therefore possible. For example, because the excitonic bands are relatively broad with respect to the multiexcitonic states, there are limited regions of the crystal momentum space where the transition between the two is more likely.
Collapse
Affiliation(s)
- Xiaoyu Xie
- Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, Liverpool L69 3BX, U.K
| |
Collapse
|
8
|
Mardazad S, Xu Y, Yang X, Grundner M, Schollwöck U, Ma H, Paeckel S. Quantum dynamics simulation of intramolecular singlet fission in covalently linked tetracene dimer. J Chem Phys 2021; 155:194101. [PMID: 34800955 DOI: 10.1063/5.0068292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we study singlet fission in tetracene para-dimers, covalently linked by a phenyl group. In contrast to most previous studies, we account for the full quantum dynamics of the combined excitonic and vibrational system. For our simulations, we choose a numerically unbiased representation of the molecule's wave function, enabling us to compare with experiments, exhibiting good agreement. Having access to the full wave function allows us to study in detail the post-quench dynamics of the excitons. Here, one of our main findings is the identification of a time scale t0 ≈ 35 fs dominated by coherent dynamics. It is within this time scale that the larger fraction of the singlet fission yield is generated. We also report on a reduced number of phononic modes that play a crucial role in the energy transfer between excitonic and vibrational systems. Notably, the oscillation frequency of these modes coincides with the observed electronic coherence time t0. We extend our investigations by also studying the dependency of the dynamics on the excitonic energy levels that, for instance, can be experimentally tuned by means of the solvent polarity. Here, our findings indicate that the singlet fission yield can be doubled, while the electronic coherence time t0 is mainly unaffected.
Collapse
Affiliation(s)
- Sam Mardazad
- Department of Physics, Arnold Sommerfeld Center of Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
| | - Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuexiao Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Martin Grundner
- Department of Physics, Arnold Sommerfeld Center of Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
| | - Ulrich Schollwöck
- Department of Physics, Arnold Sommerfeld Center of Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sebastian Paeckel
- Department of Physics, Arnold Sommerfeld Center of Theoretical Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
| |
Collapse
|
9
|
Gu B, Mukamel S. Optical-Cavity Manipulation of Conical Intersections and Singlet Fission in Pentacene Dimers. J Phys Chem Lett 2021; 12:2052-2056. [PMID: 33615792 DOI: 10.1021/acs.jpclett.0c03829] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We demonstrate how the singlet fission process in pentacene dimers mediated by a conical intersection is controlled by coupling the molecule to a confined optical cavity photon mode. By following the polariton quantum dynamics of a conical intersection coupled to a cavity mode taking into account vibrational relaxation and cavity loss, we find that the singlet fission can be significantly suppressed because the polaritonic conical intersection is pushed away from the initial Franck-Condon excitation region.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry and Department of Physics & Astronomy, University of California, Irvine, CA 92697, United States
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics & Astronomy, University of California, Irvine, CA 92697, United States
| |
Collapse
|
10
|
Shizu K, Adachi C, Kaji H. Visual Understanding of Vibronic Coupling and Quantitative Rate Expression for Singlet Fission in Molecular Aggregates. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Katsuyuki Shizu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
11
|
Sasmal S, Vendrell O. Non-adiabatic quantum dynamics without potential energy surfaces based on second-quantized electrons: Application within the framework of the MCTDH method. J Chem Phys 2020; 153:154110. [PMID: 33092359 DOI: 10.1063/5.0028116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A first principles quantum formalism to describe the non-adiabatic dynamics of electrons and nuclei based on a second quantization representation (SQR) of the electronic motion combined with the usual representation of the nuclear coordinates is introduced. This procedure circumvents the introduction of potential energy surfaces and non-adiabatic couplings, providing an alternative to the Born-Oppenheimer approximation. An important feature of the molecular Hamiltonian in the mixed first quantized representation for the nuclei and the SQR representation for the electrons is that all degrees of freedom, nuclear positions and electronic occupations, are distinguishable. This makes the approach compatible with various tensor decomposition Ansätze for the propagation of the nuclear-electronic wavefunction. Here, we describe the application of this formalism within the multi-configuration time-dependent Hartree framework and its multilayer generalization, corresponding to Tucker and hierarchical Tucker tensor decompositions of the wavefunction, respectively. The approach is applied to the calculation of the photodissociation cross section of the HeH+ molecule under extreme ultraviolet irradiation, which features non-adiabatic effects and quantum interferences between the two possible fragmentation channels, He + H+ and He+ + H. These calculations are compared with the usual description based on ab initio potential energy surfaces and non-adiabatic coupling matrix elements, which fully agree. The proof-of-principle calculations serve to illustrate the advantages and drawbacks of this formalism, which are discussed in detail, as well as possible ways to overcome them. We close with an outlook of possible application domains where the formalism might outperform the usual approach, for example, in situations that combine a strong static correlation of the electrons with non-adiabatic electronic-nuclear effects.
Collapse
Affiliation(s)
- Sudip Sasmal
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuneheimer Feld 229, 69120 Heidelberg, Germany
| | - Oriol Vendrell
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuneheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Nagami T, Tonami T, Okada K, Yoshida W, Miyamoto H, Nakano M. Vibronic coupling density analysis and quantum dynamics simulation for singlet fission in pentacene and its halogenated derivatives. J Chem Phys 2020; 153:134302. [DOI: 10.1063/5.0024746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Takanori Nagami
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takayoshi Tonami
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kenji Okada
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Wataru Yoshida
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hajime Miyamoto
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
13
|
Isukapalli SVK, Lekshmi RS, Samanta PK, Vennapusa SR. Formation of excited triplet states in naphthalene diimide and perylene diimide derivatives: A detailed theoretical study. J Chem Phys 2020; 153:124301. [PMID: 33003744 DOI: 10.1063/5.0012476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mechanistic details of the excited triplet state formation upon photoexcitation to the low-lying singlet manifold in naphthalene diimide and perylene diimide derivatives are explored theoretically. Static and dynamic aspects of two singlets (S1 and S2) and six triplets (T1-T6) of these molecules are investigated. Suitable vibronic Hamiltonians are constructed to investigate the internal conversion dynamics in both the singlet and triplet manifolds. Computed singlet-triplet energetics, spin-orbit coupling matrix elements, and intersystem crossing rates strongly suggest an efficient intersystem crossing process involving higher triplet states (T6, T5, and T4). Separate full dimensional quantum wavepacket simulations of singlet and triplet manifolds in the approximate linear vibronic model by assuming initial Franck-Condon conditions are carried out to unravel the internal conversion decay dynamics in the respective manifolds. The obtained diabatic electronic populations and nuclear densities are analyzed to illustrate the triplet generation pathways involving higher triplet states in these molecules.
Collapse
Affiliation(s)
- Sai Vamsi Krishna Isukapalli
- Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, India
| | - R S Lekshmi
- Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, India
| | - Pralok Kumar Samanta
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Sivaranjana Reddy Vennapusa
- Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
14
|
Affiliation(s)
- David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|