1
|
Hutchison CM, Perrett S, van Thor JJ. XFEL Beamline Optical Instrumentation for Ultrafast Science. J Phys Chem B 2024; 128:8855-8868. [PMID: 39087627 PMCID: PMC11421085 DOI: 10.1021/acs.jpcb.4c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Free electron lasers operating in the soft and hard X-ray regime provide capabilities for ultrafast science in many areas, including X-ray spectroscopy, diffractive imaging, solution and material scattering, and X-ray crystallography. Ultrafast time-resolved applications in the picosecond, femtosecond, and attosecond regimes are often possible using single-shot experimental configurations. Aside from X-ray pump and X-ray probe measurements, all other types of ultrafast experiments require the synchronized operation of pulsed laser excitation for resonant or nonresonant pumping. This Perspective focuses on the opportunities for the optical control of structural dynamics by applying techniques from nonlinear spectroscopy to ultrafast X-ray experiments. This typically requires the synthesis of two or more optical pulses with full control of pulse and interpulse parameters. To this end, full characterization of the femtosecond optical pulses is also highly desirable. It has recently been shown that two-color and two-pulse femtosecond excitation of fluorescent protein crystals allowed a Tannor-Rice coherent control experiment, performed under characterized conditions. Pulse shaping and the ability to synthesize multicolor and multipulse conditions are highly desirable and would enable XFEL facilities to offer capabilities for structural dynamics. This Perspective will give a summary of examples of the types of experiments that could be achieved, and it will additionally summarize the laser, pulse shaping, and characterization that would be recommended as standard equipment for time-resolved XFEL beamlines, with an emphasis on ultrafast time-resolved serial femtosecond crystallography.
Collapse
Affiliation(s)
- Christopher
D. M. Hutchison
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Samuel Perrett
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Jasper J. van Thor
- Department
of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United
Kingdom
| |
Collapse
|
2
|
Perrett S, Chatrchyan V, Buckup T, van Thor JJ. Application of density matrix Wigner transforms for ultrafast macromolecular and chemical x-ray crystallography. J Chem Phys 2024; 160:100901. [PMID: 38456527 DOI: 10.1063/5.0188888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Time-Resolved Serial Femtosecond Crystallography (TR-SFX) conducted at X-ray Free Electron Lasers (XFELs) has become a powerful tool for capturing macromolecular structural movies of light-initiated processes. As the capabilities of XFELs advance, we anticipate that a new range of coherent control and structural Raman measurements will become achievable. Shorter optical and x-ray pulse durations and increasingly more exotic pulse regimes are becoming available at free electron lasers. Moreover, with high repetition enabled by the superconducting technology of European XFEL (EuXFEL) and Linac Coherent Light Source (LCLS-II) , it will be possible to improve the signal-to-noise ratio of the light-induced differences, allowing for the observation of vibronic motion on the sub-Angstrom level. To predict and assign this coherent motion, which is measurable with a structural technique, new theoretical approaches must be developed. In this paper, we present a theoretical density matrix approach to model the various population and coherent dynamics of a system, which considers molecular system parameters and excitation conditions. We emphasize the use of the Wigner transform of the time-dependent density matrix, which provides a phase space representation that can be directly compared to the experimental positional displacements measured in a TR-SFX experiment. Here, we extend the results from simple models to include more realistic schemes that include large relaxation terms. We explore a variety of pulse schemes using multiple model systems using realistic parameters. An open-source software package is provided to perform the density matrix simulation and Wigner transformations. The open-source software allows us to define any arbitrary level schemes as well as any arbitrary electric field in the interaction Hamiltonian.
Collapse
Affiliation(s)
- Samuel Perrett
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Viktoria Chatrchyan
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität, D-69120 Heidelberg, Germany
| | - Jasper J van Thor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Perrett S, Fadini A, Hutchison CDM, Bhattacharya S, Morrison C, Turkot O, Jakobsen MB, Größler M, Licón-Saláiz J, Griese F, Flewett S, Valerio J, Schulz J, Biednov M, Jiang Y, Han H, Yousef H, Khakhulin D, Milne C, Barty A, van Thor JJ. Kilohertz droplet-on-demand serial femtosecond crystallography at the European XFEL station FXE. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:024310. [PMID: 38638699 PMCID: PMC11026113 DOI: 10.1063/4.0000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
X-ray Free Electron Lasers (XFELs) allow the collection of high-quality serial femtosecond crystallography data. The next generation of megahertz superconducting FELs promises to drastically reduce data collection times, enabling the capture of more structures with higher signal-to-noise ratios and facilitating more complex experiments. Currently, gas dynamic virtual nozzles (GDVNs) stand as the sole delivery method capable of best utilizing the repetition rate of megahertz sources for crystallography. However, their substantial sample consumption renders their use impractical for many protein targets in serial crystallography experiments. Here, we present a novel application of a droplet-on-demand injection method, which allowed operation at 47 kHz at the European XFEL (EuXFEL) by tailoring a multi-droplet injection scheme for each macro-pulse. We demonstrate a collection rate of 150 000 indexed patterns per hour. We show that the performance and effective data collection rate are comparable to GDVN, with a sample consumption reduction of two orders of magnitude. We present lysozyme crystallographic data using the Large Pixel Detector at the femtosecond x-ray experiment endstation. Significant improvement of the crystallographic statistics was made by correcting for a systematic drift of the photon energy in the EuXFEL macro-pulse train, which was characterized from indexing the individual frames in the pulse train. This is the highest resolution protein structure collected and reported at the EuXFEL at 1.38 Å resolution.
Collapse
Affiliation(s)
- Samuel Perrett
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alisia Fadini
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Sayantan Bhattacharya
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Cade Morrison
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Mads Bregenholt Jakobsen
- Center for Data and Computing in Natural Sciences (CDCS), Notkestrasse 10, D-22607 Hamburg, Germany
| | - Michael Größler
- Center for Data and Computing in Natural Sciences (CDCS), Notkestrasse 10, D-22607 Hamburg, Germany
| | - José Licón-Saláiz
- Center for Data and Computing in Natural Sciences (CDCS), Notkestrasse 10, D-22607 Hamburg, Germany
| | | | - Samuel Flewett
- Center for Data and Computing in Natural Sciences (CDCS), Notkestrasse 10, D-22607 Hamburg, Germany
| | - Joana Valerio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Yifeng Jiang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Huijong Han
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Hazem Yousef
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Anton Barty
- Center for Data and Computing in Natural Sciences (CDCS), Notkestrasse 10, D-22607 Hamburg, Germany
| | - Jasper J. van Thor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
4
|
Hutchison CDM, Baxter JM, Fitzpatrick A, Dorlhiac G, Fadini A, Perrett S, Maghlaoui K, Lefèvre SB, Cordon-Preciado V, Ferreira JL, Chukhutsina VU, Garratt D, Barnard J, Galinis G, Glencross F, Morgan RM, Stockton S, Taylor B, Yuan L, Romei MG, Lin CY, Marangos JP, Schmidt M, Chatrchyan V, Buckup T, Morozov D, Park J, Park S, Eom I, Kim M, Jang D, Choi H, Hyun H, Park G, Nango E, Tanaka R, Owada S, Tono K, DePonte DP, Carbajo S, Seaberg M, Aquila A, Boutet S, Barty A, Iwata S, Boxer SG, Groenhof G, van Thor JJ. Optical control of ultrafast structural dynamics in a fluorescent protein. Nat Chem 2023; 15:1607-1615. [PMID: 37563326 PMCID: PMC10624617 DOI: 10.1038/s41557-023-01275-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/12/2023] [Indexed: 08/12/2023]
Abstract
The photoisomerization reaction of a fluorescent protein chromophore occurs on the ultrafast timescale. The structural dynamics that result from femtosecond optical excitation have contributions from vibrational and electronic processes and from reaction dynamics that involve the crossing through a conical intersection. The creation and progression of the ultrafast structural dynamics strongly depends on optical and molecular parameters. When using X-ray crystallography as a probe of ultrafast dynamics, the origin of the observed nuclear motions is not known. Now, high-resolution pump-probe X-ray crystallography reveals complex sub-ångström, ultrafast motions and hydrogen-bonding rearrangements in the active site of a fluorescent protein. However, we demonstrate that the measured motions are not part of the photoisomerization reaction but instead arise from impulsively driven coherent vibrational processes in the electronic ground state. A coherent-control experiment using a two-colour and two-pulse optical excitation strongly amplifies the X-ray crystallographic difference density, while it fully depletes the photoisomerization process. A coherent control mechanism was tested and confirmed the wave packets assignment.
Collapse
Affiliation(s)
| | - James M Baxter
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Ann Fitzpatrick
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Gabriel Dorlhiac
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Alisia Fadini
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Samuel Perrett
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Karim Maghlaoui
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Salomé Bodet Lefèvre
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Violeta Cordon-Preciado
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Josie L Ferreira
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Volha U Chukhutsina
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Douglas Garratt
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, UK
| | - Jonathan Barnard
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, UK
| | - Gediminas Galinis
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, UK
| | - Flo Glencross
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Rhodri M Morgan
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Sian Stockton
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Ben Taylor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Letong Yuan
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Matthew G Romei
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Chi-Yun Lin
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Jon P Marangos
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, UK
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Viktoria Chatrchyan
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Heidelberg, Germany
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Jaehyun Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Sehan Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Dogeun Jang
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Hyeongi Choi
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - HyoJung Hyun
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Gisu Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Eriko Nango
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Daniel P DePonte
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Sergio Carbajo
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Matt Seaberg
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Andrew Aquila
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Sebastien Boutet
- Linac Coherent Light Source, Stanford Linear Accelerator Centre (SLAC), National Accelerator Laboratory, Menlo Park, CA, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - So Iwata
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Jasper J van Thor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
| |
Collapse
|