1
|
Anta JA, Oskam G, Pistor P. The dual nature of metal halide perovskites. J Chem Phys 2024; 160:150901. [PMID: 38624112 DOI: 10.1063/5.0190890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/14/2024] [Indexed: 04/17/2024] Open
Abstract
Metal halide perovskites have brought about a disruptive shift in the field of third-generation photovoltaics. Their potential as remarkably efficient solar cell absorbers was first demonstrated in the beginning of the 2010s. However, right from their inception, persistent challenges have impeded the smooth adoption of this technology in the industry. These challenges encompass issues such as the lack of reproducibility in fabrication, limited mid- and long-term stability, and concerns over toxicity. Despite achieving record efficiencies that have outperformed even well-established technologies, such as polycrystalline silicon, these hurdles have hindered the seamless transition of this technology into industrial applications. In this Perspective, we discuss which of these challenges are rooted in the unique dual nature of metal halide perovskites, which simultaneously function as electronic and ionic semiconductors. This duality results in the intermingling of processes occurring at vastly different timescales, still complicating both their comprehensive investigation and the development of robust and dependable devices. Our discussion here undertakes a critical analysis of the field, addressing the current status of knowledge for devices based on halide perovskites in view of electronic and ionic conduction, the underlying models, and the challenges encountered when these devices are optoelectronically characterized. We place a distinct emphasis on the positive contributions that this area of research has not only made to the advancement of photovoltaics but also to the broader progress of solid-state physics and photoelectrochemistry.
Collapse
Affiliation(s)
- Juan A Anta
- Center for Nanoscience and Sustainable Technologies (CNATS), Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Gerko Oskam
- Center for Nanoscience and Sustainable Technologies (CNATS), Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Sevilla, Spain
- Department of Applied Physics, CINVESTAV-IPN, Mérida, Yuc. 97310, Mexico
| | - Paul Pistor
- Center for Nanoscience and Sustainable Technologies (CNATS), Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
2
|
Szostak R, de Souza Gonçalves A, de Freitas JN, Marchezi PE, de Araújo FL, Tolentino HCN, Toney MF, das Chagas Marques F, Nogueira AF. In Situ and Operando Characterizations of Metal Halide Perovskite and Solar Cells: Insights from Lab-Sized Devices to Upscaling Processes. Chem Rev 2023; 123:3160-3236. [PMID: 36877871 DOI: 10.1021/acs.chemrev.2c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The performance and stability of metal halide perovskite solar cells strongly depend on precursor materials and deposition methods adopted during the perovskite layer preparation. There are often a number of different formation pathways available when preparing perovskite films. Since the precise pathway and intermediary mechanisms affect the resulting properties of the cells, in situ studies have been conducted to unravel the mechanisms involved in the formation and evolution of perovskite phases. These studies contributed to the development of procedures to improve the structural, morphological, and optoelectronic properties of the films and to move beyond spin-coating, with the use of scalable techniques. To explore the performance and degradation of devices, operando studies have been conducted on solar cells subjected to normal operating conditions, or stressed with humidity, high temperatures, and light radiation. This review presents an update of studies conducted in situ using a wide range of structural, imaging, and spectroscopic techniques, involving the formation/degradation of halide perovskites. Operando studies are also addressed, emphasizing the latest degradation results for perovskite solar cells. These works demonstrate the importance of in situ and operando studies to achieve the level of stability required for scale-up and consequent commercial deployment of these cells.
Collapse
Affiliation(s)
- Rodrigo Szostak
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Agnaldo de Souza Gonçalves
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
- Gleb Wataghin Institute of Physics, University of Campinas (UNICAMP), 13083-859 Campinas, SP, Brazil
| | - Jilian Nei de Freitas
- Center for Information Technology Renato Archer (CTI), 13069-901 Campinas, SP, Brazil
| | - Paulo E Marchezi
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
- Department of Engineering and Physics, Karlstad University, 651 88 Karlstad, Sweden
| | - Francineide Lopes de Araújo
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Hélio Cesar Nogueira Tolentino
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Michael F Toney
- Department of Chemical & Biological Engineering, and Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | | | - Ana Flavia Nogueira
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| |
Collapse
|
3
|
Srivastava P, Kumar R, Ronchiya H, Bag M. Intensity modulated photocurrent spectroscopy to investigate hidden kinetics at hybrid perovskite–electrolyte interface. Sci Rep 2022; 12:14212. [PMID: 35987774 PMCID: PMC9392765 DOI: 10.1038/s41598-022-16353-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/08/2022] [Indexed: 12/01/2022] Open
Abstract
The numerous assorted accounts of the fundamental questions of ion migration in hybrid perovskites are making the picture further intricate. The review of photo-induced ion migration using small perturbation frequency domain techniques other than impedance spectroscopy is more crucial now. Herein, we probe into this by investigating perovskite–electrolyte (Pe–E) and polymer-aqueous electrolyte (Po–aqE) interface using intensity modulated photocurrent spectroscopy (IMPS) in addition to photoelectrochemical impedance spectroscopy (PEIS). We reported that the electronic-ionic interaction in hybrid perovskites including the low-frequency ion/charge transfer and recombination kinetics at the interface leads to the spiral feature in IMPS Nyquist plot of perovskite-based devices. This spiral trajectory for the perovskite-electrolyte interface depicts three distinct ion kinetics going on at the different time scales which can be more easily unveiled by IMPS rather than PEIS. Hence, IMPS is a promising alternative to PEIS. We used Peter’s method of interpretation of IMPS plot in photoelectrochemistry to estimate charge transfer efficiency \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$({Q}_{ste})$$\end{document}(Qste) from the Rate Constant Model. The \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${Q}_{ste}$$\end{document}Qste at low-frequency for Pe–E interface exceeds unity due to ion migration induced modified potential across the perovskite active layer. Hence, ion migration and mixed electronic-ionic conductivity of hybrid perovskites are responsible for the extraordinary properties of this material.
Collapse
|
4
|
Riquelme AJ, Valadez-Villalobos K, Boix PP, Oskam G, Mora-Seró I, Anta JA. Understanding equivalent circuits in perovskite solar cells. Insights from drift-diffusion simulation. Phys Chem Chem Phys 2022; 24:15657-15671. [PMID: 35730867 DOI: 10.1039/d2cp01338j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Perovskite solar cells (PSCs) have reached impressively high efficiencies in a short period of time; however, the optoelectronic properties of halide perovskites are surprisingly complex owing to the coupled ionic-electronic charge carrier dynamics. Electrical impedance spectroscopy (EIS) is a widely used characterization tool to elucidate the mechanisms and kinetics governing the performance of PSCs, as well as of many other semiconductor devices. In general, equivalent circuits are used to evaluate EIS results. Oftentimes these are justified via empirical constructions and the real physical meaning of the elements remains disputed. In this perspective, we use drift-diffusion numerical simulations of typical thin-film, planar PSCs to generate impedance spectra avoiding intrinsic experimental difficulties such as instability and low reproducibility. The ionic and electronic properties of the device, such as ion vacancy density, diffusion coefficients, recombination mechanism, etc., can be changed individually in the simulations, so their effects can be directly observed. We evaluate the resulting EIS spectra by comparing two commonly used equivalent circuits with series and parallel connections respectively, which result in two signals with significantly different time constants. Both circuits can fit the EIS spectra and by extracting the values of the elements of one of the circuits, the values of the elements of the other circuit can be unequivocally obtained. Consequently, both can be used to analyse the EIS of a PSC. However, the physical meaning of each element in each circuit could differ. EIS can produce a broad range of physical information. We analyse the physical interpretation of the elements of each circuit and how to correlate the elements of one circuit with the elements of the other in order to have a direct picture of the physical processes occurring in the device.
Collapse
Affiliation(s)
- Antonio J Riquelme
- Área de Química Física, Universidad Pablo de Olavide, E-41013, Seville, Spain.
| | | | - Pablo P Boix
- Institut de Ciència Molecular, Universidad de València, C/J. Beltran 2, Paterna, Spain
| | - Gerko Oskam
- Área de Química Física, Universidad Pablo de Olavide, E-41013, Seville, Spain. .,Department of Applied Physics, CINVESTAV-IPN, Mérida, Yucatán, 97310, Mexico
| | - Iván Mora-Seró
- Institute of Advanced Materials, University Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, Spain
| | - Juan A Anta
- Área de Química Física, Universidad Pablo de Olavide, E-41013, Seville, Spain.
| |
Collapse
|
5
|
Mutlu A, Yeşil T, Kıymaz D, Zafer C. Simultaneous Optimization of Charge Transport Properties in a Triple-Cation Perovskite Layer and Triple-Cation Perovskite/Spiro-OMeTAD Interface by Dual Passivation. ACS OMEGA 2022; 7:17907-17920. [PMID: 35664622 PMCID: PMC9161386 DOI: 10.1021/acsomega.2c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Molecular engineering of additives is a highly effective method to increase the efficiency of perovskite solar cells by reducing trap states and charge carrier barriers in bulk and on the thin film surface. In particular, the elimination of undercoordinated lead species that act as the nonradiative charge recombination center or contain defects that may limit interfacial charge transfer is critical for producing a highly efficient triple-cation perovskite solar cell. Here, 2-iodoacetamide (2I-Ac), 2-bromoacetamide (2Br-Ac), and 2-chloroacetamide (2Cl-Ac) molecules, which can be coordinated with lead, have been used by adding them into a chlorobenzene antisolvent to eliminate the defects encountered in the triple-cation perovskite thin film. The passivation process has been carried out with the coordination between the oxygen anion (-) and the lead (+2) cation on the enolate molecule, which is in the resonance structure of the molecules. The Spiro-OMeTAD/triple-cation perovskite interface has been improved by surface passivation by releasing HX (X = I, Br) as a byproduct because of the separation of alpha hydrogen on the molecule. As a result, a solar cell with a negligible hysteresis operating at 19.5% efficiency has been produced by using the 2Br-Ac molecule, compared to the 17.6% efficiency of the reference cell.
Collapse
Affiliation(s)
- Adem Mutlu
- Solar Energy Institute, Ege University, 35100 Izmir, Turkey
| | - Tamer Yeşil
- Solar Energy Institute, Ege University, 35100 Izmir, Turkey
| | - Deniz Kıymaz
- Solar Energy Institute, Ege University, 35100 Izmir, Turkey
| | - Ceylan Zafer
- Solar Energy Institute, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
6
|
Lin CH, Hu L, Guan X, Kim J, Huang CY, Huang JK, Singh S, Wu T. Electrode Engineering in Halide Perovskite Electronics: Plenty of Room at the Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108616. [PMID: 34995372 DOI: 10.1002/adma.202108616] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Contact engineering is a prerequisite for achieving desirable functionality and performance of semiconductor electronics, which is particularly critical for organic-inorganic hybrid halide perovskites due to their ionic nature and highly reactive interfaces. Although the interfaces between perovskites and charge-transporting layers have attracted lots of attention due to the photovoltaic and light-emitting diode applications, achieving reliable perovskite/electrode contacts for electronic devices, such as transistors and memories, remains as a bottleneck. Herein, a critical review on the elusive nature of perovskite/electrode interfaces with a focus on the interfacial electrochemistry effects is presented. The basic guidelines of electrode selection are given for establishing non-polarized interfaces and optimal energy level alignment for perovskite materials. Furthermore, state-of-the-art strategies on interface-related electrode engineering are reviewed and discussed, which aim at achieving ohmic transport and eliminating hysteresis in perovskite devices. The role and multiple functionalities of self-assembled monolayers that offer a unique approach toward improving perovskite/electrode contacts are also discussed. The insights on electrode engineering pave the way to advancing stable and reliable perovskite devices in diverse electronic applications.
Collapse
Affiliation(s)
- Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Jiyun Kim
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Jing-Kai Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Simrjit Singh
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| |
Collapse
|
7
|
Guerrero A, Bisquert J, Garcia-Belmonte G. Impedance Spectroscopy of Metal Halide Perovskite Solar Cells from the Perspective of Equivalent Circuits. Chem Rev 2021; 121:14430-14484. [PMID: 34845904 DOI: 10.1021/acs.chemrev.1c00214] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Impedance spectroscopy (IS) provides a detailed understanding of the dynamic phenomena underlying the operation of photovoltaic and optoelectronic devices. Here we provide a broad summary of the application of IS to metal halide perovskite materials, solar cells, electrooptic and memory devices. IS has been widely used to characterize perovskite solar cells, but the variability of samples and the presence of coupled ionic-electronic effects form a complex problem that has not been fully solved yet. We summarize the understanding that has been obtained so far, the basic methods and models, as well as the challenging points still present in this research field. Our approach emphasizes the importance of the equivalent circuit for monitoring the parameters that describe the response and providing a physical interpretation. We discuss the possibilities of models from the general perspective of solar cell behavior, and we describe the specific aspects and properties of the metal halide perovskites. We analyze the impact of the ionic effects and the memory effects, and we describe the combination of light-modulated techniques such as intensity modulated photocurrent spectroscopy (IMPS) for obtaining more detailed information in complex cases. The transformation of the frequency to time domain is discussed for the consistent interpretation of time transient techniques and the prediction of features of current-voltage hysteresis. We discuss in detail the stability issues and the occurrence of transformations of the sample coupled to the measurements.
Collapse
Affiliation(s)
- Antonio Guerrero
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain
| | - Juan Bisquert
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain.,Yonsei Frontier Lab, Yonsei University, Seoul 03722, South Korea
| | | |
Collapse
|
8
|
Erazo EA, Gómez M, Rios L, Patiño EJ, Cortés MT, Ortiz P. Electrodeposited PEDOT:PSS-Al 2O 3 Improves the Steady-State Efficiency of Inverted Perovskite Solar Cells. Polymers (Basel) 2021; 13:polym13234162. [PMID: 34883665 PMCID: PMC8659661 DOI: 10.3390/polym13234162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 01/20/2023] Open
Abstract
The atomic layer deposition (ALD) of Al2O3 between perovskite and the hole transporting material (HTM) PEDOT:PSS has previously been shown to improve the efficiency of perovskite solar cells. However, the costs associated with this technique make it unaffordable. In this work, the deposition of an organic-inorganic PEDOT:PSS-Cl-Al2O3 bilayer is performed by a simple electrochemical technique with a final annealing step, and the performance of this material as HTM in inverted perovskite solar cells is studied. It was found that this material (PEDOT:PSS-Al2O3) improves the solar cell performance by the same mechanisms as Al2O3 obtained by ALD: formation of an additional energy barrier, perovskite passivation, and increase in the open-circuit voltage (Voc) due to suppressed recombination. As a result, the incorporation of the electrochemical Al2O3 increased the cell efficiency from 12.1% to 14.3%. Remarkably, this material led to higher steady-state power conversion efficiency, improving a recurring problem in solar cells.
Collapse
Affiliation(s)
- Eider A. Erazo
- Departamento de Química, Universidad de los Andes, Bogotá D.C. 111711, Colombia;
| | - Martín Gómez
- Departamento de Ingeniería Química, Universidad de los Andes, Bogotá D.C. 111711, Colombia; (M.G.); (P.O.)
| | - Leonardo Rios
- Superconductivity and Nanodevices Laboratory, Departamento de Física, Universidad de los Andes, Bogotá D.C. 111711, Colombia; (L.R.); (E.J.P.)
| | - Edgar J. Patiño
- Superconductivity and Nanodevices Laboratory, Departamento de Física, Universidad de los Andes, Bogotá D.C. 111711, Colombia; (L.R.); (E.J.P.)
| | - María T. Cortés
- Departamento de Química, Universidad de los Andes, Bogotá D.C. 111711, Colombia;
- Correspondence:
| | - Pablo Ortiz
- Departamento de Ingeniería Química, Universidad de los Andes, Bogotá D.C. 111711, Colombia; (M.G.); (P.O.)
| |
Collapse
|
9
|
Zhang X, Chen X, Chen Y, Nadege Ouedraogo NA, Li J, Bao X, Han CB, Shirai Y, Zhang Y, Yan H. Rapid degradation behavior of encapsulated perovskite solar cells under light, bias voltage or heat fields. NANOSCALE ADVANCES 2021; 3:6128-6137. [PMID: 36133943 PMCID: PMC9418572 DOI: 10.1039/d1na00495f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 05/30/2023]
Abstract
When the power conversion efficiency (PCE) of perovskite solar cells (PSCs) rapidly approaches that of commercial solar cells, the stability becomes the most important obstacle for the commercialization of PSCs. Aside from the widely studied slow PCE degradation, the PSCs also show a unique rapid PCE degradation. Although the degradation due to oxygen and humidity can be avoided by encapsulation, that due to bias voltage, light and heat could not be effective suppressed and will lead to considerable degradation. Usually, the rapid PCE degradation is believed to be from ion migration. However, a systematic investigation is yet to be carried out. This work quantitatively and systematically investigated the relationships between external fields (bias voltage, light or heat), ion migration and device performance. By comparing the performance of reference PSCs after 90 min degradation under these fields, we conclude that (1) the electric field affects the spatial distribution of mobile ions; (2) the light field changes the mobile ion densities and drives the ion migration; (3) the heat field results in perovskite decomposition as well as changing the mobile ion densities. In addition to the analysis of the reference device, we experimentally proved that the improved device stability upon introducing phenethylammonium iodide (PEAI) or poly-methyl methacrylate (PMMA) layers originates from the inhibition of mobile ion density and migration.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Faculty of Materials and Manufacturing, Beijing University of Technology Beijing 100124 China
| | - Xiaoqing Chen
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Faculty of Information Technology, Beijing University of Technology Beijing 100124 China
| | - Yichuan Chen
- Faculty of Materials and Manufacturing, Beijing University of Technology Beijing 100124 China
| | | | - Jingjie Li
- Faculty of Materials and Manufacturing, Beijing University of Technology Beijing 100124 China
| | - Xiulong Bao
- School of Electrical and Electronic Engineering, Beijing-Dublin International College (BDIC), University College Dublin Ireland
| | - Chang Bao Han
- Faculty of Materials and Manufacturing, Beijing University of Technology Beijing 100124 China
| | - Yasuhiro Shirai
- National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yongzhe Zhang
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Faculty of Information Technology, Beijing University of Technology Beijing 100124 China
| | - Hui Yan
- Faculty of Materials and Manufacturing, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
10
|
Purohit V, Choudhary RNP. Studies of structural and electrical properties of lead-free ceramic: Bi(Ba0.25Ti0.25Fe0.5)O3. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Starkholm A, Kloo L, Svensson PH. Implicit Tandem Organic-Inorganic Hybrid Perovskite Solar Cells Based on Internal Dye Sensitization: Robotized Screening, Synthesis, Device Implementation, and Theoretical Insights. J Am Chem Soc 2020; 142:18437-18448. [PMID: 33054186 PMCID: PMC7596754 DOI: 10.1021/jacs.0c06698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Low-dimensional hybrid perovskite
materials offer significantly
improved stability as well as an extensive compositional space to
explore. However, they suffer from poor photovoltaic performance as
compared to the 3D perovskite materials because of poor charge-transport
properties. Herein, we present the concept of internal dye-sensitized
hybrid perovskite compounds involving five novel low-dimensional perovskite-type
materials 1–5 incorporating triarylmethane,
phenazinium and near-infrared (NIR) cyanine cationic dyes, respectively.
The synthesis characterization and theoretical analysis of these compounds
are presented. Theoretical calculations provide interesting insights
into the effects of these dyes on the band structure of the low-dimensional
anionic metal-halides and especially highlight compound 1 as a promising photovoltaic candidate. Solar cell investigation
of devices based on 1 were conducted. The results show
an average power conversion efficiency (PCE) of about 0.1%, which
is among the highest reported for a 1D material despite the use of
undoped Spiro-OMeTAD as the hole-transport material (HTM). Incident
photon-to-electron efficiency (IPCE) spectra confirm the contribution
of the dye to the overall photocurrent of the solar cell. Moreover,
examination of solar cell devices based on the bismuth-based compound 5 resulted in PCEs in the range of 0.1%. This illustrates
the potential of this concept to be exploited for lead-free photovoltaics.
Finally automated robotized screening of low-dimensional hybrid perovskite
materials through the screening robot PROTEUS has emerged as a powerful
tool in the search for novel perovskite-like materials. Our work highlights
that the use of cationic dyes could induce interesting sensitizing
properties to low-dimensional metal-halide chains and may therefore
provide inspiration and new design strategies for the synthesis of
new lead-free photovoltaic materials
Collapse
Affiliation(s)
- Allan Starkholm
- RISE Chemical Process and Pharmaceutical Development, Forskargatan 20J, Södertälje 15136, Sweden.,Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Lars Kloo
- Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Per H Svensson
- RISE Chemical Process and Pharmaceutical Development, Forskargatan 20J, Södertälje 15136, Sweden.,Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
12
|
Abdulrahim SM, Ahmad Z, Bahadra J, Al-Thani NJ. Electrochemical Impedance Spectroscopy Analysis of Hole Transporting Material Free Mesoporous and Planar Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1635. [PMID: 32825347 PMCID: PMC7558988 DOI: 10.3390/nano10091635] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022]
Abstract
The future photovoltaic technologies based on perovskite materials are aimed to build low tech, truly economical, easily fabricated, broadly deployable, and trustworthy solar cells. Hole transport material (HTM) free perovskite solar cells (PSCs) are among the most likely architectures which hold a distinctive design and provide a simple way to produce large-area and cost-effective manufacture of PSCs. Notably, in the monolithic scheme of the HTM-free PSCs, all layers can be printed using highly reproducible and morphology-controlled methods, and this design has successfully been demonstrated for industrial-scale fabrication. In this review article, we comprehensively describe the recent advancements in the different types of mesoporous (nanostructured) and planar HTM-free PSCs. In addition, the effect of various nanostructures and mesoporous layers on their performance is discussed using the electrochemical impedance spectroscopy (EIS) technique. We bring together the different perspectives that researchers have developed to interpret and analyze the EIS data of the HTM-free PSCs. Their analysis using the EIS tool, the limitations of these studies, and the future work directions to overcome these limitations to enhance the performance of HTM-free PSCs are comprehensively considered.
Collapse
Affiliation(s)
| | - Zubair Ahmad
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar;
| | - Jolly Bahadra
- Qatar University-Young Scientists Center (QU-YSC), Qatar University, Doha 2713, Qatar; (J.B.); (N.J.A.-T.)
| | - Noora J. Al-Thani
- Qatar University-Young Scientists Center (QU-YSC), Qatar University, Doha 2713, Qatar; (J.B.); (N.J.A.-T.)
| |
Collapse
|
13
|
Affiliation(s)
- Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
14
|
Solanki A, Guerrero A, Zhang Q, Bisquert J, Sum TC. Interfacial Mechanism for Efficient Resistive Switching in Ruddlesden-Popper Perovskites for Non-volatile Memories. J Phys Chem Lett 2020; 11:463-470. [PMID: 31873017 DOI: 10.1021/acs.jpclett.9b03181] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Ion migration, one origin of current-voltage hysteresis, is the bane of halide perovskite optoelectronics. Herein, we leverage this unwelcome trait to unlock new opportunities for resistive switching using layered Ruddlesdsen-Popper perovskites (RPPs) and explicate the underlying mechanisms. The ON/OFF ratio of RPP-based devices is strongly dependent on the layers and peaks at n̅ = 5, demonstrating the highest ON/OFF ratio of ∼104 and minimal operation voltage in 1.0 mm2 devices. Long data retention even in 60% relative humidity and stable write/erase capabilities exemplify their potential for memory applications. Impedance spectroscopy reveals a chemical reaction between migrating ions and the external contacts to modify the charge transfer barrier at the interface to control the resistive states. Our findings explore a new family of facile materials and the necessity of ionic population, migration, and their reactivity with external contacts in devices for switching and memory applications.
Collapse
Affiliation(s)
- Ankur Solanki
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
- Department of Science, School of Technology , Pandit Deendayal Petroleum University , Gandhinagar 382007 , India
| | - Antonio Guerrero
- Institute of Advanced Materials (INAM) , Universitat Jaume I , 12006 Castelló , Spain
| | - Qiannan Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| | - Juan Bisquert
- Institute of Advanced Materials (INAM) , Universitat Jaume I , 12006 Castelló , Spain
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| |
Collapse
|