1
|
Lang H, Sato T. Time-dependent orbital-optimized coupled-cluster methods families for fermion-mixtures dynamics. J Chem Phys 2024; 161:114114. [PMID: 39291685 DOI: 10.1063/5.0227236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Five time-dependent orbital optimized coupled-cluster methods, of which four can converge to the time-dependent complete active space self-consistent-field method, are presented for fermion-mixtures with arbitrary fermion kinds and numbers. Truncation schemes maintaining the intragroup orbital rotation invariance, as well as equations of motion of coupled-cluster (CC) amplitudes and orbitals, are derived. Present methods are compact CC-parameterization alternatives to the time-dependent multiconfiguration self-consistent-field method for systems consisting of arbitrarily different kinds and numbers of interacting fermions. Theoretical analysis of applications of present methods to various chemical systems is reported.
Collapse
Affiliation(s)
- Haifeng Lang
- Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeshi Sato
- Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Photon Science Center, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Institute for Photon Science and Laser Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Høyer NM, Christiansen O. Quasi-direct Quantum Molecular Dynamics: The Time-Dependent Adaptive Density-Guided Approach for Potential Energy Surface Construction. J Chem Theory Comput 2024; 20:558-579. [PMID: 38183272 DOI: 10.1021/acs.jctc.3c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
We present a new quasi-direct quantum molecular dynamics computational method which offers a compromise between quantum dynamics using a precomputed potential energy surface (PES) and fully direct quantum dynamics. This method is termed the time-dependent adaptive density-guided approach (TD-ADGA) and is a method for constructing a PES on the fly during a dynamics simulation. This is achieved by acquisition of new single-point (SP) calculations and refitting of the PES, depending on the need of the dynamics. The TD-ADGA is a further development of the adaptive density-guided approach (ADGA) for PES construction where the placement of SPs is guided by the density of the nuclear wave function. In TD-ADGA, the ADGA framework has been integrated into the time propagation of the time-dependent nuclear wave function and we use the reduced one-mode density of this wave function to guide when and where new SPs are placed. The PES is thus extended or updated if the wave function moves into new areas or if a certain area becomes more important. Here, we derive equations for the reduced one-mode density for the time-dependent Hartree (TDH) method and for multiconfiguration time-dependent Hartree (MCTDH) methods, but the TD-ADGA can be used with any time-dependent wave function method as long as a density is available. The TD-ADGA method has been investigated on molecular systems containing single- and double-minimum potentials and on single-mode and multi-mode systems. We explore different approaches to handle the fact that the TD-ADGA involves a PES that changes during the computation and show how results can be obtained that are in very good agreement with results obtained by using an accurate reference PES. Dynamics with TD-ADGA is essentially a black box procedure, where only the initialization of the system and how to compute SPs must be provided. The TD-ADGA thus makes it easier to carry out quantum molecular dynamics and the quasi-direct framework opens up the possibility to compute quantum dynamics accurately for larger molecular systems.
Collapse
Affiliation(s)
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Højlund MG, Zoccante A, Christiansen O. Time-dependent coupled cluster with orthogonal adaptive basis functions: General formalism and application to the vibrational problem. J Chem Phys 2024; 160:024105. [PMID: 38189608 DOI: 10.1063/5.0186000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
We derive equations of motion for bivariational wave functions with orthogonal adaptive basis sets and specialize the formalism to the coupled cluster Ansatz. The equations are related to the biorthogonal case in a transparent way, and similarities and differences are analyzed. We show that the amplitude equations are identical in the orthogonal and biorthogonal formalisms, while the linear equations that determine the basis set time evolution differ by symmetrization. Applying the orthogonal framework to the nuclear dynamics problem, we introduce and implement the orthogonal time-dependent modal vibrational coupled cluster (oTDMVCC) method and benchmark it against exact reference results for four triatomic molecules as well as a reduced-dimensional (5D) trans-bithiophene model. We confirm numerically that the biorthogonal TDMVCC hierarchy converges to the exact solution, while oTDMVCC does not. The differences between TDMVCC and oTDMVCC are found to be small for three of the five cases, but we also identify one case where the formal deficiency of the oTDMVCC approach results in clear and visible errors relative to the exact result. For the remaining example, oTDMVCC exhibits rather modest but visible errors.
Collapse
Affiliation(s)
- Mads Greisen Højlund
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Alberto Zoccante
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale (UPO), Via T. Michel 11, 15100 Alessandria, Italy
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Jensen AB, Højlund MG, Zoccante A, Madsen NK, Christiansen O. Efficient time-dependent vibrational coupled cluster computations with time-dependent basis sets at the two-mode coupling level: Full and hybrid TDMVCC[2]. J Chem Phys 2023; 159:204106. [PMID: 38010335 DOI: 10.1063/5.0175506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
The computation of the nuclear quantum dynamics of molecules is challenging, requiring both accuracy and efficiency to be applicable to systems of interest. Recently, theories have been developed for employing time-dependent basis functions (denoted modals) with vibrational coupled cluster theory (TDMVCC). The TDMVCC method was introduced along with a pilot implementation, which illustrated good accuracy in benchmark computations. In this paper, we report an efficient implementation of TDMVCC, covering the case where the wave function and Hamiltonian contain up to two-mode couplings. After a careful regrouping of terms, the wave function can be propagated with a cubic computational scaling with respect to the number of degrees of freedom. We discuss the use of a restricted set of active one-mode basis functions for each mode, as well as two interesting limits: (i) the use of a full active basis where the variational modal determination amounts essentially to the variational determination of a time-dependent reference state for the cluster expansion; and (ii) the use of a single function as an active basis for some degrees of freedom. The latter case defines a hybrid TDMVCC/TDH (time-dependent Hartree) approach that can obtain even lower computational scaling. The resulting computational scaling for hybrid and full TDMVCC[2] is illustrated for polyaromatic hydrocarbons with up to 264 modes. Finally, computations on the internal vibrational redistribution of benzoic acid (39 modes) are used to show the faster convergence of TDMVCC/TDH hybrid computations towards TDMVCC compared to simple neglect of some degrees of freedom.
Collapse
Affiliation(s)
| | - Mads Greisen Højlund
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Alberto Zoccante
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale (UPO), Via T. Michel 11, 15100 Alessandria, Italy
| | - Niels Kristian Madsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Van Haeften A, Ash C, Worth G. Propagating multi-dimensional density operators using the multi-layer-ρ multi-configurational time-dependent Hartree method. J Chem Phys 2023; 159:194114. [PMID: 37982483 DOI: 10.1063/5.0172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023] Open
Abstract
Solving the Liouville-von-Neumann equation using a density operator provides a more complete picture of dynamical quantum phenomena than by using a wavepacket and solving the Schrödinger equation. As density operators are not restricted to the description of pure states, they can treat both thermalized and open systems. In practice, however, they are rarely used to study molecular systems as the computational resources required are even more prohibitive than those needed for wavepacket dynamics. In this paper, we demonstrate the potential utility of a scheme based on the powerful multi-layer multi-configurational time-dependent Hartree algorithm for propagating multi-dimensional density operators. Studies of two systems using this method are presented at a range of temperatures and including up to 13 degrees of freedom. The first case is single proton transfer in salicylaldimine, while the second is double proton transfer in porphycene. A comparison is also made with the approach of using stochastic wavepackets.
Collapse
Affiliation(s)
- Alice Van Haeften
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Ceridwen Ash
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Graham Worth
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| |
Collapse
|
6
|
Højlund MG, Jensen AB, Zoccante A, Christiansen O. Bivariational time-dependent wave functions with biorthogonal adaptive basis sets: General formulation and regularization of equations of motion through polar decomposition. J Chem Phys 2022; 157:234104. [PMID: 36550053 DOI: 10.1063/5.0127431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We derive general bivariational equations of motion (EOMs) for time-dependent wave functions with biorthogonal time-dependent basis sets. The time-dependent basis functions are linearly parameterized and their fully variational time evolution is ensured by solving a set of so-called constraint equations, which we derive for arbitrary wave function expansions. The formalism allows division of the basis set into an active basis and a secondary basis, ensuring a flexible and compact wave function. We show how the EOMs specialize to a few common wave function forms, including coupled cluster and linearly expanded wave functions. It is demonstrated, for the first time, that the propagation of such wave functions is not unconditionally stable when a secondary basis is employed. The main signature of the instability is a strong increase in non-orthogonality, which eventually causes the calculation to fail; specifically, the biorthogonal active bra and ket bases tend toward spanning different spaces. Although formally allowed, this causes severe numerical issues. We identify the source of this problem by reparametrizing the time-dependent basis set through polar decomposition. Subsequent analysis allows us to remove the instability by setting appropriate matrix elements to zero. Although this solution is not fully variational, we find essentially no deviation in terms of autocorrelation functions relative to the variational formulation. We expect that the results presented here will be useful for the formal analysis of bivariational time-dependent wave functions for electronic and nuclear dynamics in general and for the practical implementation of time-dependent CC wave functions in particular.
Collapse
Affiliation(s)
- Mads Greisen Højlund
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | | | - Alberto Zoccante
- Dipartimento di Scienze e Innovazione Tecnologica, Universitá del Piemonte Orientale (UPO), Via T. Michel 11, 15100 Alessandria, Italy
| | - Ove Christiansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Yagi K, Sugita Y. Anharmonic Vibrational Calculations Based on Group-Localized Coordinates: Applications to Internal Water Molecules in Bacteriorhodopsin. J Chem Theory Comput 2021; 17:5007-5020. [PMID: 34296615 PMCID: PMC10986902 DOI: 10.1021/acs.jctc.1c00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient anharmonic vibrational method is developed exploiting the locality of molecular vibration. Vibrational coordinates localized to a group of atoms are employed to divide the potential energy surface (PES) of a system into intra- and inter-group contributions. Then, the vibrational Schrödinger equation is solved based on a PES, in which the inter-group coupling is truncated at the harmonic level while accounting for the intra-group anharmonicity. The method is applied to a pentagonal hydrogen bond network (HBN) composed of internal water molecules and charged residues in a membrane protein, bacteriorhodopsin. The PES is calculated by the quantum mechanics/molecular mechanics (QM/MM) calculation at the level of B3LYP-D3/aug-cc-pVDZ. The infrared (IR) spectrum is computed using a set of coordinates localized to each water molecule and amino acid residue by second-order vibrational quasi-degenerate perturbation theory (VQDPT2). Benchmark calculations show that the proposed method yields the N-D/O-D stretching frequencies with an error of 7 cm-1 at the cost reduced by more than five times. In contrast, the harmonic approximation results in a severe error of 150 cm-1. Furthermore, the size of QM regions is carefully assessed to find that the QM regions should include not only the pentagonal HBN itself but also its HB partners. VQDPT2 calculations starting from transient structures obtained by molecular dynamics simulations have shown that the structural sampling has a significant impact on the calculated IR spectrum. The incorporation of anharmonicity, sufficiently large QM regions, and structural samplings are of essential importance to reproduce the experimental IR spectrum. The computational spectrum paves the way for decoding the IR signal of strong HBNs and helps elucidate their functional roles in biomolecules.
Collapse
Affiliation(s)
- Kiyoshi Yagi
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory
for Biomolecular Function Simulation, RIKEN
Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi,
Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
8
|
Beć KB, Grabska J, Huck CW. Current and future research directions in computer-aided near-infrared spectroscopy: A perspective. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119625. [PMID: 33706116 DOI: 10.1016/j.saa.2021.119625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The present review aims to draw a perspective on the vibrational spectroscopy combined with the tools of computational chemistry. This includes an overview of the accomplishments made so far, the assessment of the present development trends and the prospects for continuing these advances. State-of-the-art methods, current challenges and the expected future advances are evaluated from the point-of-view of the practical application in vibrational spectroscopy. A special attention is given to near-infrared (NIR) spectroscopy, which occupies a distinct position among the techniques of vibrational spectroscopy. As the result of intrinsically complex spectra, reliance on the anharmonicity as well as keen interest given to complex materials, NIR spectroscopy may particularly benefit from computational chemistry. The present key limitations hindering development of NIR spectroscopy are identified; these constitute primarily the limit in the treatable system size and the inability to effectively include chemical matrix effects. Given the expanding role of NIR spectroscopy in science and industry, lifting these limitations would directly enhance the general potential of this technique.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, CCB-Center for Chemistry and Biomedicine, Innrain 80/82, 6020 Innsbruck, Austria
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, CCB-Center for Chemistry and Biomedicine, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, CCB-Center for Chemistry and Biomedicine, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
9
|
Madsen NK, Jensen RB, Christiansen O. Calculating vibrational excitation energies using tensor-decomposed vibrational coupled-cluster response theory. J Chem Phys 2021; 154:054113. [DOI: 10.1063/5.0037240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Niels Kristian Madsen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| | - Rasmus Berg Jensen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| | - Ove Christiansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Pedersen TB, Kristiansen HE, Bodenstein T, Kvaal S, Schøyen ØS. Interpretation of Coupled-Cluster Many-Electron Dynamics in Terms of Stationary States. J Chem Theory Comput 2021; 17:388-404. [PMID: 33337895 PMCID: PMC7808707 DOI: 10.1021/acs.jctc.0c00977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 01/06/2023]
Abstract
We demonstrate theoretically and numerically that laser-driven many-electron dynamics, as described by bivariational time-dependent coupled-cluster (CC) theory, may be analyzed in terms of stationary-state populations. Projectors heuristically defined from linear response theory and equation-of-motion CC theory are proposed for the calculation of stationary-state populations during interaction with laser pulses or other external forces, and conservation laws of the populations are discussed. Numerical tests of the proposed projectors, involving both linear and nonlinear optical processes for He and Be atoms and for LiH, CH+, and LiF molecules show that the laser-driven evolution of the stationary-state populations at the coupled-cluster singles-and-doubles (CCSD) level is very close to that obtained by full configuration interaction (FCI) theory, provided that all stationary states actively participating in the dynamics are sufficiently well approximated. When double-excited states are important for the dynamics, the quality of the CCSD results deteriorates. Observing that populations computed from the linear response projector may show spurious small-amplitude, high-frequency oscillations, the equation-of-motion projector emerges as the most promising approach to stationary-state populations.
Collapse
Affiliation(s)
- Thomas Bondo Pedersen
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Håkon Emil Kristiansen
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Tilmann Bodenstein
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Simen Kvaal
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | | |
Collapse
|
11
|
Madsen NK, Jensen AB, Hansen MB, Christiansen O. A general implementation of time-dependent vibrational coupled-cluster theory. J Chem Phys 2020; 153:234109. [PMID: 33353317 DOI: 10.1063/5.0034013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The first general excitation level implementation of the time-dependent vibrational coupled cluster (TDVCC) method introduced in a recent publication [J. Chem. Phys. 151, 154116 (2019)] is presented. The general framework developed for time-independent vibrational coupled cluster (VCC) calculations has been extended to the time-dependent context. This results in an efficient implementation of TDVCC with general coupling levels in the cluster operator and Hamiltonian. Thus, the convergence of the TDVCC[k] hierarchy toward the complete-space limit can be studied for any sum-of-product Hamiltonian. Furthermore, a scheme for including selected higher-order excitations for a subset of modes is introduced and studied numerically. Three different definitions of the TDVCC autocorrelation function (ACF) are introduced and analyzed in both theory and numerical experiments. Example calculations are presented for an array of systems including imidazole, formyl fluoride, formaldehyde, and a reduced-dimensionality bithiophene model. The results show that the TDVCC[k] hierarchy converges systematically toward the full-TDVCC limit and that the implementation allows accurate quantum-dynamics simulations of large systems to be performed. Specifically, the intramolecular vibrational-energy redistribution of the 21-dimensional imidazole molecule is studied in terms of the decay of the ACF. Furthermore, the importance of product separability in the definition of the ACF is highlighted when studying non-interacting subsystems.
Collapse
Affiliation(s)
- Niels Kristian Madsen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | | | - Mads Bøttger Hansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Ove Christiansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Madsen NK, Hansen MB, Christiansen O, Zoccante A. Time-dependent vibrational coupled cluster with variationally optimized time-dependent basis sets. J Chem Phys 2020; 153:174108. [DOI: 10.1063/5.0024428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Niels Kristian Madsen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Mads Bøttger Hansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Ove Christiansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Alberto Zoccante
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Hansen MB, Madsen NK, Christiansen O. Extended vibrational coupled cluster: Stationary states and dynamics. J Chem Phys 2020; 153:044133. [DOI: 10.1063/5.0015413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mads Bøttger Hansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Niels Kristian Madsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Madsen NK, Hansen MB, Worth GA, Christiansen O. MR-MCTDH[n]: Flexible Configuration Spaces and Nonadiabatic Dynamics within the MCTDH[n] Framework. J Chem Theory Comput 2020; 16:4087-4097. [DOI: 10.1021/acs.jctc.0c00379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Niels Kristian Madsen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK−8000 Aarhus C, Denmark
| | - Mads Bøttger Hansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK−8000 Aarhus C, Denmark
| | - Graham A. Worth
- Department of Chemistry, University College London, 20, Gordon St., WC1H 0AJ London, United Kingdom
| | - Ove Christiansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK−8000 Aarhus C, Denmark
| |
Collapse
|
15
|
Madsen NK, Hansen MB, Worth GA, Christiansen O. Systematic and variational truncation of the configuration space in the multiconfiguration time-dependent Hartree method: The MCTDH[n] hierarchy. J Chem Phys 2020; 152:084101. [DOI: 10.1063/1.5142459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Niels Kristian Madsen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| | - Mads Bøttger Hansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| | - Graham A. Worth
- Department of Chemistry, University College London, 20, Gordon St., WC1H 0AJ London, United Kingdom
| | - Ove Christiansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| |
Collapse
|