1
|
Lang L, Cezar HM, Adamowicz L, Pedersen TB. Quantum Definition of Molecular Structure. J Am Chem Soc 2024; 146:1760-1764. [PMID: 38199236 PMCID: PMC10811664 DOI: 10.1021/jacs.3c11467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024]
Abstract
Molecular structure, a key concept of chemistry, has remained elusive from the perspective of all-particle quantum mechanics, despite many efforts. Viewing molecular structure as a manifestation of strong statistical correlation between nuclear positions, we propose a practical method based on Markov chain Monte Carlo sampling and unsupervised machine learning. Application to the D3+ molecule unambiguously shows that it possesses an equilateral triangular structure. These results provide a major step forward in our understanding of the molecular structure from fundamental quantum principles.
Collapse
Affiliation(s)
- Lucas Lang
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway
- Technische
Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni
135, 10623 Berlin, Germany
| | - Henrique M. Cezar
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway
| | - Ludwik Adamowicz
- Centre
for Advanced Study at the Norwegian Academy of Science and Letters, Drammensveien 78, 0271 Oslo, Norway
- Department
of Chemistry and Biochemistry, University
of Arizona, Tucson, Arizona 85721, United States
| | - Thomas B. Pedersen
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo, Norway
- Centre
for Advanced Study at the Norwegian Academy of Science and Letters, Drammensveien 78, 0271 Oslo, Norway
| |
Collapse
|
2
|
Feldmann R, Baiardi A, Reiher M. Symmetry-Projected Nuclear-Electronic Hartree-Fock: Eliminating Rotational Energy Contamination. J Phys Chem A 2023; 127:8943-8954. [PMID: 37831620 PMCID: PMC10614303 DOI: 10.1021/acs.jpca.3c04822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Indexed: 10/15/2023]
Abstract
We present a symmetry projection technique for enforcing rotational and parity symmetries in nuclear-electronic Hartree-Fock wave functions, which treat electrons and nuclei on equal footing. The molecular Hamiltonian obeys rotational and parity inversion symmetries, which are, however, broken by expanding in Gaussian basis sets that are fixed in space. We generate a trial wave function with the correct symmetry properties by projecting the wave function onto representations of the three-dimensional rotation group, i.e., the special orthogonal group in three dimensions SO(3). As a consequence, the wave function becomes an eigenfunction of the angular momentum operator which (i) eliminates the contamination of the ground-state wave function by highly excited rotational states arising from the broken rotational symmetry and (ii) enables the targeting of specific rotational states of the molecule. We demonstrate the efficiency of the symmetry projection technique by calculating the energies of the low-lying rotational states of the H2 and H3+ molecules.
Collapse
Affiliation(s)
- Robin Feldmann
- ETH Zürich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Alberto Baiardi
- ETH Zürich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| | - Markus Reiher
- ETH Zürich, Department of Chemistry
and Applied Biosciences, Vladimir-Prelog-Weg 2, Zürich 8093, Switzerland
| |
Collapse
|
3
|
Saly E, Ferenc D, Mátyus E. Pre-Born–Oppenheimer energies, leading-order relativistic and QED corrections for electronically excited states of molecular hydrogen. Mol Phys 2023. [DOI: 10.1080/00268976.2022.2163714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Eszter Saly
- Institute of Chemistry, ELTE, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Ferenc
- Institute of Chemistry, ELTE, Eötvös Loránd University, Budapest, Hungary
| | - Edit Mátyus
- Institute of Chemistry, ELTE, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
4
|
Rubin TM, Sarrazin M, Zobov NF, Tennyson J, Polyansky OL. Sub-percent accuracy for the intensity of a near-infrared water line at 10,670 cm −1: experiment and analysis. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2063769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tom M. Rubin
- PTB (Physikalisch-Technische Bundesanstalt), Berlin, Germany
| | - Marian Sarrazin
- PTB (Physikalisch-Technische Bundesanstalt), Berlin, Germany
| | - Nikolai F. Zobov
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Jonathan Tennyson
- Department of Physics and Astronomy, University College London, London, UK
| | - Oleg L. Polyansky
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
- Department of Physics and Astronomy, University College London, London, UK
| |
Collapse
|
5
|
Affiliation(s)
- Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
6
|
Beutel M, Ahrens A, Huang C, Suzuki Y, Varga K. Deformed explicitly correlated Gaussians. J Chem Phys 2021; 155:214103. [PMID: 34879658 DOI: 10.1063/5.0066427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Deformed explicitly correlated Gaussian (DECG) basis functions are introduced, and their matrix elements are calculated. All matrix elements can be calculated analytically in a closed form, except the Coulomb one, which has to be approximated by a Gaussian expansion. The DECG basis functions can be used to solve problems with nonspherical potentials. One example of such potential is the dipole self-interaction term in the Pauli-Fierz Hamiltonian. Examples are presented showing the accuracy and necessity of deformed Gaussian basis functions to accurately solve light-matter coupled systems in cavity QED.
Collapse
Affiliation(s)
- Matthew Beutel
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Alexander Ahrens
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Chenhang Huang
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | - Kálmán Varga
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
7
|
Ireland R, Jeszenszki P, Mátyus E, Martinazzo R, Ronto M, Pollak E. Lower Bounds for Nonrelativistic Atomic Energies. ACS PHYSICAL CHEMISTRY AU 2021; 2:23-37. [PMID: 35098243 PMCID: PMC8796283 DOI: 10.1021/acsphyschemau.1c00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/29/2022]
Abstract
A recently developed lower bound theory for Coulombic problems (E. Pollak, R. Martinazzo, J. Chem. Theory Comput. 2021, 17, 1535) is further developed and applied to the highly accurate calculation of the ground-state energy of two- (He, Li+, and H-) and three- (Li) electron atoms. The method has been implemented with explicitly correlated many-particle basis sets of Gaussian type, on the basis of the highly accurate (Ritz) upper bounds they can provide with relatively small numbers of functions. The use of explicitly correlated Gaussians is developed further for computing the variances, and the necessary modifications are here discussed. The computed lower bounds are of submilli-Hartree (parts per million relative) precision and for Li represent the best lower bounds ever obtained. Although not yet as accurate as the corresponding (Ritz) upper bounds, the computed bounds are orders of magnitude tighter than those obtained with other lower bound methods, thereby demonstrating that the proposed method is viable for lower bound calculations in quantum chemistry applications. Among several aspects, the optimization of the wave function is shown to play a key role for both the optimal solution of the lower bound problem and the internal check of the theory.
Collapse
Affiliation(s)
- Robbie
T. Ireland
- Institute
of Chemistry, ELTE, Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary,School of
Chemistry, University of Glasgow, University Avenue, G12 8QQ, Glasgow, United Kingdom
| | - Peter Jeszenszki
- Institute
of Chemistry, ELTE, Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary
| | - Edit Mátyus
- Institute
of Chemistry, ELTE, Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary,E-mail:
| | - Rocco Martinazzo
- Department
of Chemistry, University of Milan, Milan, 20122, Italy,Institute of Molecular Science and Technologies
(ISTM), Consiglio
Nazionale delle Ricerche (CNR), Milan, 20133, Italy,
| | - Miklos Ronto
- Chemical
and Biological Physics Department, Weizmann
Institute of Science, 76100, Rehovot, Israel
| | - Eli Pollak
- Chemical
and Biological Physics Department, Weizmann
Institute of Science, 76100, Rehovot, Israel,
| |
Collapse
|
8
|
Sibaev M, Polyak I, Manby FR, Knowles PJ. Molecular second-quantized Hamiltonian: Electron correlation and non-adiabatic coupling treated on an equal footing. J Chem Phys 2020; 153:124102. [DOI: 10.1063/5.0018930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Marat Sibaev
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Iakov Polyak
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Frederick R. Manby
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Peter J. Knowles
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
9
|
Muolo A, Baiardi A, Feldmann R, Reiher M. Nuclear-electronic all-particle density matrix renormalization group. J Chem Phys 2020; 152:204103. [PMID: 32486651 DOI: 10.1063/5.0007166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We introduce the Nuclear-Electronic All-Particle Density Matrix Renormalization Group (NEAP-DMRG) method for solving the time-independent Schrödinger equation simultaneously for electrons and other quantum species. In contrast to the already existing multicomponent approaches, in this work, we construct from the outset a multi-reference trial wave function with stochastically optimized non-orthogonal Gaussian orbitals. By iterative refining of the Gaussians' positions and widths, we obtain a compact multi-reference expansion for the multicomponent wave function. We extend the DMRG algorithm to multicomponent wave functions to take into account inter- and intra-species correlation effects. The efficient parameterization of the total wave function as a matrix product state allows NEAP-DMRG to accurately approximate the full configuration interaction energies of molecular systems with more than three nuclei and 12 particles in total, which is currently a major challenge for other multicomponent approaches. We present the NEAP-DMRG results for two few-body systems, i.e., H2 and H3 +, and one larger system, namely, BH3.
Collapse
Affiliation(s)
- Andrea Muolo
- ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Alberto Baiardi
- ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Robin Feldmann
- ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|