1
|
Brütting M, Bahmann H, Kümmel S. Combining Local Range Separation and Local Hybrids: A Step in the Quest for Obtaining Good Energies and Eigenvalues from One Functional. J Phys Chem A 2024; 128:5212-5223. [PMID: 38905018 DOI: 10.1021/acs.jpca.4c02787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Some of the most successful exchange-correlation approximations in density functional theory are "hybrids", i.e., they rely on combining semilocal density functionals with exact nonlocal Fock exchange. In recent years, two classes of hybrid functionals have emerged as particularly promising: range-separated hybrids on the one hand, and local hybrids on the other hand. These functionals offer the hope to overcome a long-standing "observable dilemma", i.e., the fact that density functionals typically yield either a good description of binding energies, as obtained, e.g., in global and local hybrids, or physically interpretable eigenvalues, as obtained, e.g., in optimally tuned range-separated hybrids. Obtaining both of these characteristics from one and the same functional with the same set of parameters has been a long-standing challenge. We here discuss combining the concepts of local range separation and local hybrids as part of a constraint-guided quest for functionals that overcome the observable dilemma.
Collapse
Affiliation(s)
- Moritz Brütting
- Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| | - Hilke Bahmann
- Physical and Theoretical Chemistry, University of Wuppertal, 42097 Wuppertal, Germany
| | - Stephan Kümmel
- Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
2
|
Kaupp M, Wodyński A, Arbuznikov AV, Fürst S, Schattenberg CJ. Toward the Next Generation of Density Functionals: Escaping the Zero-Sum Game by Using the Exact-Exchange Energy Density. Acc Chem Res 2024; 57:1815-1826. [PMID: 38905497 PMCID: PMC11223257 DOI: 10.1021/acs.accounts.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
ConspectusKohn-Sham density functional theory (KS DFT) is arguably the most widely applied electronic-structure method with tens of thousands of publications each year in a wide variety of fields. Its importance and usefulness can thus hardly be overstated. The central quantity that determines the accuracy of KS DFT calculations is the exchange-correlation functional. Its exact form is unknown, or better "unknowable", and therefore the derivation of ever more accurate yet efficiently applicable approximate functionals is the "holy grail" in the field. In this context, the simultaneous minimization of so-called delocalization errors and static correlation errors is the greatest challenge that needs to be overcome as we move toward more accurate yet computationally efficient methods. In many cases, an improvement on one of these two aspects (also often termed fractional-charge and fractional-spin errors, respectively) generates a deterioration in the other one. Here we report on recent notable progress in escaping this so-called "zero-sum-game" by constructing new functionals based on the exact-exchange energy density. In particular, local hybrid and range-separated local hybrid functionals are discussed that incorporate additional terms that deal with static correlation as well as with delocalization errors. Taking hints from other coordinate-space models of nondynamical and strong electron correlations (the B13 and KP16/B13 models), position-dependent functions that cover these aspects in real space have been devised and incorporated into the local-mixing functions determining the position-dependence of exact-exchange admixture of local hybrids as well as into the treatment of range separation in range-separated local hybrids. While initial functionals followed closely the B13 and KP16/B13 frameworks, meanwhile simpler real-space functions based on ratios of semilocal and exact-exchange energy densities have been found, providing a basis for relatively simple and numerically convenient functionals. Notably, the correction terms can either increase or decrease exact-exchange admixture locally in real space (and in interelectronic-distance space), leading even to regions with negative admixture in cases of particularly strong static correlations. Efficient implementations into a fast computer code (Turbomole) using seminumerical integration techniques make such local hybrid and range-separated local hybrid functionals promising new tools for complicated composite systems in many research areas, where simultaneously small delocalization errors and static correlation errors are crucial. First real-world application examples of the new functionals are provided, including stretched bonds, symmetry-breaking and hyperfine coupling in open-shell transition-metal complexes, as well as a reduction of static correlation errors in the computation of nuclear shieldings and magnetizabilities. The newest versions of range-separated local hybrids (e.g., ωLH23tdE) retain the excellent frontier-orbital energies and correct asymptotic exchange-correlation potential of the underlying ωLH22t functional while improving substantially on strong-correlation cases. The form of these functionals can be further linked to the performance of the recent impactful deep-neural-network "black-box" functional DM21, which itself may be viewed as a range-separated local hybrid.
Collapse
Affiliation(s)
- Martin Kaupp
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Artur Wodyński
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Alexei V. Arbuznikov
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Susanne Fürst
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Caspar J. Schattenberg
- Institut für Chemie,
Theoretische Chemie/Quantenchemie, Technische
Universität Berlin, Sekr. C7, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
3
|
Haasler M, Maier TM, Kaupp M. Toward a correct treatment of core properties with local hybrid functionals. J Comput Chem 2023; 44:2461-2477. [PMID: 37635647 DOI: 10.1002/jcc.27211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023]
Abstract
In local hybrid functionals (LHs), a local mixing function (LMF) determines the position-dependent exact-exchange admixture. We report new LHs that focus on an improvement of the LMF in the core region while retaining or partly improving upon the high accuracy in the valence region exhibited by the LH20t functional. The suggested new pt-LMFs are based on a Padé form and modify the previously used ratio between von Weizsäcker and Kohn-Sham local kinetic energies by different powers of the density to enable flexibly improved approximations to the correct high-density and iso-orbital limits relevant for the innermost core region. Using TDDFT calculations for a set of K-shell core excitations of second- and third-period systems including accurate state-of-the-art relativistic orbital corrections, the core part of the LMF is optimized, while the valence part is optimized as previously reported for test sets of atomization energies and reaction barriers (Haasler et al., J Chem Theory Comput 2020, 16, 5645). The LHs are completed by a calibration function that minimizes spurious nondynamical correlation effects caused by the gauge ambiguities of exchange-energy densities, as well as by B95c meta-GGA correlation. The resulting LH23pt functional relates to the previous LH20t functional but specifically improves upon the core region.
Collapse
Affiliation(s)
- Matthias Haasler
- Technische Universität Berlin, Institute of Chemistry Theoretical Chemistry/Quantum Chemistry, Berlin, Germany
| | - Toni M Maier
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Braunschweig, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institute of Chemistry Theoretical Chemistry/Quantum Chemistry, Berlin, Germany
| |
Collapse
|
4
|
Brütting M, Foerster JM, Kümmel S. Understanding Primary Charge Separation in the Heliobacterial Reaction Center. J Phys Chem Lett 2023; 14:3092-3102. [PMID: 36951395 DOI: 10.1021/acs.jpclett.3c00377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The homodimeric reaction center of heliobacteria retains features of the ancestral reaction center and can thus provide insights into the evolution of photosynthesis. Primary charge separation is expected to proceed in a two-step mechanism along either of the two reaction center branches. We reveal the first charge-separation step from first-principles calculations based on time-dependent density functional theory with an optimally tuned range-separated hybrid and ab initio Born-Oppenheimer molecular dynamics: the electron is most likely localized on the electron transfer cofactor 3 (EC3, OH-chlorophyll a), and the hole on the adjacent EC2. Including substantial parts of the surrounding protein environment into the calculations shows that a distinct structural mechanism is decisive for the relative energetic positioning of the electronic excitations: specific charged amino acids in the vicinity of EC3 lower the energy of charge-transfer excitations and thus facilitate efficient charge separation. These results are discussed considering recent experimental insights.
Collapse
|
5
|
Toulouse J, Schwinn K, Zapata F, Levitt A, Cancès É, Luppi E. Photoionization and core resonances from range-separated time-dependent density-functional theory for open-shell states: Example of the lithium atom. J Chem Phys 2022; 157:244104. [PMID: 36586976 DOI: 10.1063/5.0134645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We consider the calculations of photoionization spectra and core resonances of open-shell systems using range-separated time-dependent density-functional theory. Specifically, we use the time-dependent range-separated hybrid (TDRSH) scheme, combining a long-range Hartree-Fock exchange potential and kernel with a short-range potential and kernel from a local density-functional approximation, and the time-dependent locally range-separated hybrid (TDLRSH) scheme, which uses a local range-separation parameter. To efficiently perform the calculations, we formulate a spin-unrestricted linear-response Sternheimer approach in a non-orthogonal B-spline basis set using appropriate frequency-dependent boundary conditions. We illustrate this approach on the Li atom, which suggests that TDRSH and TDLRSH are adequate simple methods for estimating the single-electron photoionization spectra of open-shell systems.
Collapse
Affiliation(s)
- Julien Toulouse
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| | - Karno Schwinn
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| | - Felipe Zapata
- Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Antoine Levitt
- Laboratoire de mathématiques d'Orsay, Université Paris-Saclay and CNRS, F-91405 Orsay, France
| | - Éric Cancès
- CERMICS, École des Ponts and Inria Paris, 6 and 8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France
| | - Eleonora Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| |
Collapse
|
6
|
Schwinn K, Zapata F, Levitt A, Cancès É, Luppi E, Toulouse J. Photoionization and core resonances from range-separated density-functional theory: General formalism and example of the beryllium atom. J Chem Phys 2022; 156:224106. [PMID: 35705410 DOI: 10.1063/5.0091073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We explore the merits of linear-response range-separated time-dependent density-functional theory (TDDFT) for the calculation of photoionization spectra. We consider two variants of range-separated TDDFT, namely, the time-dependent range-separated hybrid (TDRSH) scheme, which uses a global range-separation parameter, and the time-dependent locally range-separated hybrid (TDLRSH), which uses a local range-separation parameter, and compare with standard time-dependent local-density approximation (TDLDA) and time-dependent Hartree-Fock (TDHF). We show how to calculate photoionization spectra with these methods using the Sternheimer approach formulated in a non-orthogonal B-spline basis set with appropriate frequency-dependent boundary conditions. We illustrate these methods on the photoionization spectrum of the Be atom, focusing, in particular, on the core resonances. Both the TDRSH and TDLRSH photoionization spectra are found to constitute a large improvement over the TDLDA photoionization spectrum and a more modest improvement over the TDHF photoionization spectrum.
Collapse
Affiliation(s)
- Karno Schwinn
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| | - Felipe Zapata
- Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Antoine Levitt
- CERMICS, École des Ponts and Inria Paris, 6 & 8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France
| | - Éric Cancès
- CERMICS, École des Ponts and Inria Paris, 6 & 8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France
| | - Eleonora Luppi
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| | - Julien Toulouse
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| |
Collapse
|
7
|
Brütting M, Bahmann H, Kümmel S. Hybrid functionals with local range separation: Accurate atomization energies and reaction barrier heights. J Chem Phys 2022; 156:104109. [PMID: 35291795 DOI: 10.1063/5.0082957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Range-separated hybrid approximations to the exchange-correlation density functional mix exact and semi-local exchange in a position-dependent manner. In their conventional form, the range separation is controlled by a constant parameter. Turning this constant into a density functional leads to a locally space-dependent range-separation function and thus a more powerful and flexible range-separation approach. In this work, we explore the self-consistent implementation of a local range-separated hybrid, taking into account a one-electron self-interaction correction and the behavior under uniform density scaling. We discuss different forms of the local range-separation function that depend on the electron density, its gradient, and the kinetic energy density. For test sets of atomization energies, reaction barrier heights, and total energies of atoms, we demonstrate that our best model is a clear improvement over common global range-separated hybrid functionals and can compete with density functionals that contain multiple empirical parameters. Promising results for equilibrium bond lengths, harmonic vibrational frequencies, and vertical ionization potentials further underline the potential and flexibility of our approach.
Collapse
Affiliation(s)
- Moritz Brütting
- Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| | - Hilke Bahmann
- Physical and Theoretical Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Stephan Kümmel
- Theoretical Physics IV, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
8
|
Maier TM, Ikabata Y, Nakai H. Assessing locally range-separated hybrid functionals from a gradient expansion of the exchange energy density. J Chem Phys 2021; 154:214101. [PMID: 34240986 DOI: 10.1063/5.0047628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Locally range-separated hybrid (LRSH) functionals feature a real-space-dependent range separation function (RSF) instead of a system-independent range-separation parameter, which thus enables a more flexible admixture of exact exchange than conventional range-separated hybrid functionals. In particular, the development of suitable RSF models and exploring the capabilities of the LRSH approach, in general, are tasks that require further investigations and will be addressed in this work. We propose a non-empirical scheme based on a detailed scaling analysis with respect to a uniform coordinate scaling and on a short-range expansion of the range-separated exchange energy density to derive new RSF models from a gradient expansion of the exchange energy density. After optimizing a small set of empirical parameters introduced to enhance their flexibility, the resulting second- and fourth-order RSFs are evaluated with respect to atomic exchange energies, atomization energies, and transition barrier heights.
Collapse
Affiliation(s)
- Toni M Maier
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
9
|
Savin A. Models and corrections: Range separation for electronic interaction—Lessons from density functional theory. J Chem Phys 2020; 153:160901. [DOI: 10.1063/5.0028060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Andreas Savin
- Laboratoire de Chimie Théorique, CNRS and Sorbonne University, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|