1
|
Savchenko S, Vokhmintsev A, Karabanalov M, Zhang Y, Henaish A, Neogi A, Weinstein I. Thermally assisted optical processes in InP/ZnS quantum dots. Phys Chem Chem Phys 2024; 26:18727-18740. [PMID: 38934056 DOI: 10.1039/d3cp03931e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The utilization of InP-based biocompatible quantum dots (QDs) necessitates a comprehensive understanding of the structure-dependent characteristics influencing their optical behavior. The optimization of core/shell QDs for practical applications is of particular interest due to their reduced toxicity, enhanced photostability, and improved luminescence efficiency. This optimization involves analyzing thermally activated processes involving exciton and defect-related energy levels. This study investigates water-soluble colloidal InP/ZnS QDs with varying shell thicknesses and stabilizing coatings using temperature-dependent optical absorption (OA) and photoluminescence (PL). Our results indicate that all samples experience temperature-induced shifts in exciton absorption and luminescence peaks due to interactions with acoustic phonons. Despite the wide size distribution of nanocrystals, the halfwidth of the bands remains constant. We observe a temperature-dependent Stokes shift in InP/ZnS QDs, revealing the fine structure of exciton states across different configurations. Furthermore, our findings demonstrate common mechanisms underlying PL thermal quenching in these QDs, regardless of the shell thickness or coating type. Specifically, defect-related emissions arise from localized energy levels at the core/shell interface. At the same time, exciton PL quenching primarily occurs through thermally activated electron migration from the InP core to the ZnS shell. Overall, our study highlights the potential for tailoring the temperature response of InP/ZnS QDs by adjusting shell thickness, offering opportunities to optimize their performance for specific applications.
Collapse
Affiliation(s)
- Sergey Savchenko
- NANOTECH Centre, Ural Federal University, 620002 Ekaterinburg, Russia
| | | | | | - Yanning Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Ahmed Henaish
- NANOTECH Centre, Ural Federal University, 620002 Ekaterinburg, Russia
- Physics Department, Tanta University, 31527 Tanta, Egypt
| | - Arup Neogi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Ilya Weinstein
- NANOTECH Centre, Ural Federal University, 620002 Ekaterinburg, Russia
- Institute of Metallurgy, Ural Branch of Russian Academy of Sciences, 620016 Ekaterinburg, Russia
| |
Collapse
|
2
|
Shulenberger KE, Jilek MR, Sherman SJ, Hohman BT, Dukovic G. Electronic Structure and Excited State Dynamics of Cadmium Chalcogenide Nanorods. Chem Rev 2023; 123:3852-3903. [PMID: 36881852 DOI: 10.1021/acs.chemrev.2c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The cylindrical quasi-one-dimensional shape of colloidal semiconductor nanorods (NRs) gives them unique electronic structure and optical properties. In addition to the band gap tunability common to nanocrystals, NRs have polarized light absorption and emission and high molar absorptivities. NR-shaped heterostructures feature control of electron and hole locations as well as light emission energy and efficiency. We comprehensively review the electronic structure and optical properties of Cd-chalcogenide NRs and NR heterostructures (e.g., CdSe/CdS dot-in-rods, CdSe/ZnS rod-in-rods), which have been widely investigated over the last two decades due in part to promising optoelectronic applications. We start by describing methods for synthesizing these colloidal NRs. We then detail the electronic structure of single-component and heterostructure NRs and follow with a discussion of light absorption and emission in these materials. Next, we describe the excited state dynamics of these NRs, including carrier cooling, carrier and exciton migration, radiative and nonradiative recombination, multiexciton generation and dynamics, and processes that involve trapped carriers. Finally, we describe charge transfer from photoexcited NRs and connect the dynamics of these processes with light-driven chemistry. We end with an outlook that highlights some of the outstanding questions about the excited state properties of Cd-chalcogenide NRs.
Collapse
Affiliation(s)
| | - Madison R Jilek
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Skylar J Sherman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin T Hohman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States.,Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
3
|
Beard MC, Peng X, Hens Z, Weiss EA. Introduction to special issue: Colloidal quantum dots. J Chem Phys 2021; 153:240401. [PMID: 33380102 DOI: 10.1063/5.0039506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Matthew C Beard
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Xiaogang Peng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zeger Hens
- Center for Nano and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
4
|
Zhao T, Fu Y, Jang MS, Sun XS, Wu T, Lee JH, Li Y, Lee DS, Yang HY. A pH-activated charge convertible quantum dot as a novel nanocarrier for targeted protein delivery and real-time cancer cell imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111449. [PMID: 33255037 DOI: 10.1016/j.msec.2020.111449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
The rapid developments of nanocarriers based on quantum dots (QDs) have been confirmed to show substantial promise for drug delivery and bioimaging. However, optimal QDs-based nanocarriers still need to have their controlled behavior in vitro and in vivo and decrease heavy metal-associated cytotoxicity. Herein, a pH-activated charge convertible QD-based nanocarrier was fabricated by capping multifunctional polypeptide ligands (mPEG-block-poly(ethylenediamine-dihydrolipoic acid-2,3-dimethylmaleic anhydride)-L-glutamate, PEG-P(ED-DLA-DMA)LG) onto the surface of core/multishell CdSe@ZnS/ZnS QD by means of a ligand exchange strategy, followed by uploading of cytochrome C (CC) (CC-loaded QD-PEG-P(ED-DLA-DMA)LG) via electrostatic interactions, in which QDs that were water-soluble and protein-loading were perfectly integrated. That is, the CC-loaded QD-PEG-P(ED-DLA-DMA)LG inherited excellent fluorescence properties from CdSe@ZnS/ZnS QD for real-time imaging, as well as tumor-microenvironment sensitivities from PEG-P(ED-DLA-DMA)LG for enhanced cellular uptake and CC release. Experimental results verified that the QD-PEG-P(ED-DLA-DMA)LG showed enhanced internalization, rapid endo/lysosomal escape, and supplied legible real-time imaging for lung carcinoma cells. Furthermore, pH-triggered charge-convertible ability enabled the QD-PEG-P(ED-DLA-DMA)LG-CC to effectively kill cancer cells better than did the control groups. Hence, constructing smart nanocomposites by facile ligand-exchange strategy is beneficial to QD-based nanocarrier for tumor-targeting cancer therapy.
Collapse
Affiliation(s)
- Ting Zhao
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China; College of Chemistry, Jilin University, Changchun City 130012, People's Republic of China
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Xin Shun Sun
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China
| | - Tepeng Wu
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Yi Li
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People's Republic of China.
| |
Collapse
|
5
|
Dahlberg PD, Perez D, Su Z, Chiu W, Moerner WE. Cryogenic Correlative Single‐Particle Photoluminescence Spectroscopy and Electron Tomography for Investigation of Nanomaterials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Davis Perez
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Zhaoming Su
- Department of Bioengineering Stanford University Stanford CA 94305 USA
| | - Wah Chiu
- Department of Bioengineering Stanford University Stanford CA 94305 USA
- Division of CryoEM and Bioimaging, SSRL SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - W. E. Moerner
- Department of Chemistry Stanford University Stanford CA 94305 USA
| |
Collapse
|
6
|
Dahlberg PD, Perez D, Su Z, Chiu W, Moerner WE. Cryogenic Correlative Single-Particle Photoluminescence Spectroscopy and Electron Tomography for Investigation of Nanomaterials. Angew Chem Int Ed Engl 2020; 59:15642-15648. [PMID: 32330371 PMCID: PMC7894979 DOI: 10.1002/anie.202002856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 11/09/2022]
Abstract
Cryogenic single-particle photoluminescence (PL) spectroscopy has been used with great success to directly observe the heterogeneous photophysical states present in a population of luminescent particles. Cryogenic electron tomography provides complementary nanometer scale structural information to PL spectroscopy, but the two techniques have not been correlated due to technical challenges. Here, we present a method for correlating single-particle information from these two powerful microscopy modalities. We simultaneously observe PL brightness, emission spectrum, and in-plane excitation dipole orientation of CdSSe/ZnS quantum dots suspended in vitreous ice. Stable and fluctuating emitters were observed, as well as a surprising splitting of the PL spectrum into two bands with an average energy separation of 80 meV. In some cases, the onset of the splitting corresponded to changes in the in-plane excitation dipole orientation. These dynamics were assigned to structures of individual quantum dots and the excitation dipoles were visualized in the context of structural features.
Collapse
Affiliation(s)
- Peter D Dahlberg
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Davis Perez
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Zhaoming Su
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|