1
|
Li M, Zheng Y, Lei J, Chen J, Li M, Xu X, Gou Q, Grabow JU. Fluorination effects on non-covalent binding forces: A rotational study on the 2-(trifluoromethyl)acrylic acid-water complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124425. [PMID: 38754207 DOI: 10.1016/j.saa.2024.124425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
This study explores the effects of the -CF3 group on non-covalent interactions through a comprehensive rotational investigation of the 2-(trifluoromethyl)acrylic acid-water complex. Employing Fourier transform microwave spectroscopy complemented by quantum chemical calculations, two isomers, i.e., s-cis and s-trans structures, have been observed in the pulsed jet. Based on relative intensity measurements, the s-cis to the s-trans population ratio was experimentally estimated to be ∼ 1:1.2. Subsequently, a comparison of the non-covalent interactions was carried out between the three similar complexes, acrylic acid-water, methacrylic acid-water, and 2-(trifluoromethyl)acrylic acid-water, offering quantitative insights into fluorination affecting the strength of the formed hydrogen bonds important, e.g., in molecular recognition.
Collapse
Affiliation(s)
- Meng Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China; Institut für Physikalische Chemie & Elektrochemie, Gottfried-Wilhelm-Leibniz-Universität, Hannover, Callinstr. 3A, 30167 Hannover, Germany
| | - Yang Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Juncheng Lei
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Junhua Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Meiyue Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Xuefang Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Qian Gou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Jens-Uwe Grabow
- Institut für Physikalische Chemie & Elektrochemie, Gottfried-Wilhelm-Leibniz-Universität, Hannover, Callinstr. 3A, 30167 Hannover, Germany.
| |
Collapse
|
2
|
Silva WGDP, Poonia T, van Wijngaarden J. Exploring the conformational landscape, hydrogen bonding, and internal dynamics in the diallyl ether and diallyl sulfide monohydrates. J Chem Phys 2024; 160:044302. [PMID: 38258923 DOI: 10.1063/5.0180901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
The conformational spaces of the diallyl ether (DAE) and diallyl sulfide (DAS) monohydrates were explored using rotational spectroscopy from 6 to 19 GHz. Calculations at the B3LYP-D3(BJ)/aug-cc-pVTZ level suggested significant differences in their conformational behavior, with DAE-w exhibiting 22 unique conformers and DAS-w featuring three stable structures within 6 kJ mol-1. However, only transitions from the lowest energy conformer of each were experimentally observed. Spectral analysis confirmed that binding with water does not alter the conformational preference for the lowest energy structure of the monomers, but it does influence the relative stabilities of all other conformers, particularly in the case of DAE. Non-covalent interaction and quantum theory of atoms in molecules analyses showed that the observed conformer for each complex is stabilized by two intermolecular hydrogen bonds (HBs), where water primarily interacts with the central oxygen or sulfur atom of the diallyl compounds, along with secondary interactions involving the allyl groups. The nature of these interactions was further elucidated using symmetry-adapted perturbation theory, which suggests that the primary HB interaction with S in DAS is weaker and more dispersive in nature compared to the primary HB in DAE. This supports the experimental observation of a tunneling splitting exclusively in the rotational spectrum of DAS-w, as the weaker contact allows water to undergo internal motions within the complex, as shown based on calculated transition state structures for possible tunneling pathways.
Collapse
Affiliation(s)
- Weslley G D P Silva
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
| | - Tamanna Poonia
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jennifer van Wijngaarden
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
3
|
Yang T, Xu Y, Wang Z, Feng C, Feng G. Noncovalent interactions of aromatic heterocycles: rotational spectroscopy and theoretical calculations of the thiazole-CF 4 and thiazole-SF 6 complexes. Phys Chem Chem Phys 2023; 25:25566-25572. [PMID: 37718685 DOI: 10.1039/d3cp02363j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The complexes of thiazole with CF4 and SF6 have been investigated by Fourier transform microwave spectroscopy and quantum chemical calculations. One rotational spectrum was observed for the thiazole-CF4 complex. Experiments and theoretical computations confirmed that the observed structure of thiazole-CF4 is primarily formed due to N⋯CCF4 interaction with the C atom of CF4 located in the plane of the thiazole ring. The rotational transitions of thiazole-CF4 exhibit A/E torsional splitting induced by the internal rotation of the -CF3 top. The potential barrier of the -CF3 internal rotation is 0.2411(1) kJ mol-1, consistent with the calculated value (∼0.3 kJ mol-1). For the thiazole-SF6 complex, one conformer with SF6 located above the thiazole ring is detected. The observed structure of thiazole-SF6 is mainly stabilized by van der Waals interactions. The energy decomposition analysis reveals that the electrostatics and dispersion are the dominant attractive contributions to the formation of thiazole-CF4 and thiazole-SF6 dimers, whereas the weight of the dispersion term becomes more significant in the thiazole-SF6 complex compared to that of the thiazole-CF4 complex.
Collapse
Affiliation(s)
- Tingting Yang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Yugao Xu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Chunmei Feng
- Hongzhiwei Technology (Shanghai) Co. Ltd., Xinjinqiao Rd., 1599, Pudong, Shanghai, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| |
Collapse
|
4
|
Li W, Xu Y, Jin Y, Li X, Caminati W, Feng G. Three non-bonding interaction topologies of the thiazole-formaldehyde complex observed by rotational spectroscopy. Phys Chem Chem Phys 2023; 25:6491-6497. [PMID: 36786009 DOI: 10.1039/d2cp05711e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
When an aldehyde molecule interacts with a nitrogen atom inserted in an aromatic ring, they form a number of non-bonding topologies. We measured the rotational spectra of three different isomers of the thiazole-formaldehyde adduct. In all of them, formaldehyde interacts specifically with thiazole through an n → π* interaction (along the Bürgi-Dunitz trajectory) and a C-H⋯O (acting as a proton acceptor) weak hydrogen bond, or through C-H⋯N (acting as a proton donor) and C-H⋯O (acting as a proton acceptor) weak hydrogen bonds. The spectra of isotopic substituted species were also measured to draw the molecular structures. Two n → π* stabilized isomers show a vertical structure in which the two molecular planes are perpendicular to each other, and the hydrogen bonded isomers feature a co-planar architecture. The competition between these non-bonding interactions was unveiled from experiments and theoretical calculations.
Collapse
Affiliation(s)
- Wenqin Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China. .,Departamento de Química Física y Química Inorganica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E-47011, Spain
| | - Yugao Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Yan Jin
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xiaolong Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Walther Caminati
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, Bologna I-40126, Italy
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| |
Collapse
|
5
|
Dindić C, Lüchow A, Vogt N, Demaison J, Nguyen HVL. Equilibrium Structure in the Presence of Methyl Internal Rotation: Microwave Spectroscopy and Quantum Chemistry Study of the Two Conformers of 2-Acetylfuran. J Phys Chem A 2021; 125:4986-4997. [PMID: 34080419 DOI: 10.1021/acs.jpca.1c01733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For 2-acetylfuran, quantum chemistry predicted and proton magnetic resonance study reported two conformers, anti and syn, differing in the position of the carbonyl group with respect to the O1-C2 bond of the furan ring. The microwave spectrum of the title molecule was recorded in the frequency range from 2 to 26.5 GHz using a molecular jet Fourier transform microwave spectrometer, confirming the presence of both conformers. Spectroscopic parameters such as the rotational and centrifugal distortion constants could be determined with high precision. The spectra of all 13C- and 18O-isotopologues of the energetically more favorable anti-conformer could be assigned, allowing the experimental determination of bond lengths and bond angles from the heavy atom substitution rs and the semi-experimental equilibrium reSE structures. Splittings arising from the internal rotation of the acetyl methyl group could be resolved for both conformers as well as for all assigned isotopologues, from which the barrier to methyl internal rotation was determined. The torsional barrier is largely invariant at around 319 cm-1 in the parent species of anti-2-acetylfuran and its isotopologues, showing that though isotopic substitution greatly influences the rotational properties of the molecule and causes a different microwave spectrum, its effect on the methyl torsion is negligible. On the other hand, conformational effects play a decisive role, as the torsional barrier of 239.780(13) cm-1 found for syn-2-acetylfuran differs significantly from the value for anti-2-acetylfuran. The results are compared and discussed with other methyl-substituted furan derivatives and acetyl group containing ketones for a better understanding of different effects influencing molecular geometry parameters and methyl internal rotations.
Collapse
Affiliation(s)
- Christina Dindić
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - Arne Lüchow
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - Natalja Vogt
- Section of Chemical Information Systems, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany.,Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Jean Demaison
- Section of Chemical Information Systems, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| | - Ha Vinh Lam Nguyen
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris-Est Créteil, Université de Paris, Institut Pierre Simon Laplace, 61 Avenue du Général de Gaulle, 94010 Créteil, France.,Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
6
|
Melli A, Barone V, Puzzarini C. Unveiling Bifunctional Hydrogen Bonding with the Help of Quantum Chemistry: The Imidazole-Water Adduct as Test Case. J Phys Chem A 2021; 125:2989-2998. [PMID: 33818109 PMCID: PMC8154618 DOI: 10.1021/acs.jpca.1c01679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Indexed: 11/30/2022]
Abstract
The ubiquitous role of water and its amphiprotic nature call for a deeper insight into the physical-chemical properties of hydrogen-bonded complexes formed with building blocks of biomolecules. In this work, the semiexperimental (SE) approach combined with the template model (TM) protocol allowed the accurate determination of the equilibrium structure of two isomeric forms of the imidazole-water complex. In this procedure, the integration of experiment (thanks to a recent rotational spectroscopy investigation) and theory is exploited, also providing the means of assessing the reliability and accuracy of different quantum-chemical approaches. Overall, this study demonstrated the robustness of the combined SE-TM approach, which can provide accurate results using affordable quantum-chemical methods. Finally, the structural and energetic characteristics of these complexes have been examined in detail and compared with those of analogous heterocycle-water adducts, also exploiting energy decomposition analyses.
Collapse
Affiliation(s)
- Alessio Melli
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Vincenzo Barone
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Cristina Puzzarini
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
7
|
Li W, Chen J, Xu Y, Lu T, Gou Q, Feng G. Unveiling the structural and energetic properties of thiazole-water complex by microwave spectroscopy and theoretical calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118720. [PMID: 32736219 DOI: 10.1016/j.saa.2020.118720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The structure and non-covalent bonding features of the complex of thiazole and water were studied by using supersonic jet Fourier transform microwave spectroscopy and theoretical calculations. One isomer was observed which corresponds to the global minimum of the complex predicted theoretically. The rotational spectra of 9 additional isotopologues, including 5 mono-substituted heavy atoms of thiazole (34S, 13C and 15N), and 4 water isotopic species (H218O, DOH, HOD and D2O), were also measured and analyzed. The experimental spectroscopic parameters were used to determine the structural parameters of the observed isomer. Theoretical analyses based on quantum theory of atoms in molecules and natural bond orbital revealed that the two moieties are linked by a N···H-O hydrogen bond. The total interaction energy of the complex is calculated to be -25.1 kJmol-1 with electrostatics being the major term according to energy decomposition analysis.
Collapse
Affiliation(s)
- Wenqin Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Junhua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Yugao Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Tao Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Qian Gou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| |
Collapse
|
8
|
Puzzarini C, Spada L, Alessandrini S, Barone V. The challenge of non-covalent interactions: theory meets experiment for reconciling accuracy and interpretation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:343002. [PMID: 32203942 DOI: 10.1088/1361-648x/ab8253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
In the past decade, many gas-phase spectroscopic investigations have focused on the understanding of the nature of weak interactions in model systems. Despite the fact that non-covalent interactions play a key role in several biological and technological processes, their characterization and interpretation are still far from being satisfactory. In this connection, integrated experimental and computational investigations can play an invaluable role. Indeed, a number of different issues relevant to unraveling the properties of bulk or solvated systems can be addressed from experimental investigations on molecular complexes. Focusing on the interaction of biological model systems with solvent molecules (e.g., water), since the hydration of the biomolecules controls their structure and mechanism of action, the study of the molecular properties of hydrated systems containing a limited number of water molecules (microsolvation) is the basis for understanding the solvation process and how structure and reactivity vary from gas phase to solution. Although hydrogen bonding is probably the most widespread interaction in nature, other emerging classes, such as halogen, chalcogen and pnicogen interactions, have attracted much attention because of the role they play in different fields. Their understanding requires, first of all, the characterization of the directionality, strength, and nature of such interactions as well as a comprehensive analysis of their competition with other non-covalent bonds. In this review, it is shown how state-of-the-art quantum-chemical computations combined with rotational spectroscopy allow for fully characterizing intermolecular interactions taking place in molecular complexes from both structural and energetic points of view. The transition from bi-molecular complex to microsolvation and then to condensed phase is shortly addressed.
Collapse
Affiliation(s)
- Cristina Puzzarini
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
| | - Lorenzo Spada
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Silvia Alessandrini
- Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi 2, I-40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
9
|
|