1
|
Jin Z, Yim W, Retout M, Housel E, Zhong W, Zhou J, Strano MS, Jokerst JV. Colorimetric sensing for translational applications: from colorants to mechanisms. Chem Soc Rev 2024; 53:7681-7741. [PMID: 38835195 PMCID: PMC11585252 DOI: 10.1039/d4cs00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Colorimetric sensing offers instant reporting via visible signals. Versus labor-intensive and instrument-dependent detection methods, colorimetric sensors present advantages including short acquisition time, high throughput screening, low cost, portability, and a user-friendly approach. These advantages have driven substantial growth in colorimetric sensors, particularly in point-of-care (POC) diagnostics. Rapid progress in nanotechnology, materials science, microfluidics technology, biomarker discovery, digital technology, and signal pattern analysis has led to a variety of colorimetric reagents and detection mechanisms, which are fundamental to advance colorimetric sensing applications. This review first summarizes the basic components (e.g., color reagents, recognition interactions, and sampling procedures) in the design of a colorimetric sensing system. It then presents the rationale design and typical examples of POC devices, e.g., lateral flow devices, microfluidic paper-based analytical devices, and wearable sensing devices. Two highlighted colorimetric formats are discussed: combinational and activatable systems based on the sensor-array and lock-and-key mechanisms, respectively. Case discussions in colorimetric assays are organized by the analyte identities. Finally, the review presents challenges and perspectives for the design and development of colorimetric detection schemes as well as applications. The goal of this review is to provide a foundational resource for developing colorimetric systems and underscoring the colorants and mechanisms that facilitate the continuing evolution of POC sensors.
Collapse
Affiliation(s)
- Zhicheng Jin
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maurice Retout
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Emily Housel
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiajing Zhou
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse V Jokerst
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Dridi N, Jin Z, Perng W, Mattoussi H. Probing Protein Corona Formation around Gold Nanoparticles: Effects of Surface Coating. ACS NANO 2024; 18:8649-8662. [PMID: 38471029 DOI: 10.1021/acsnano.3c08005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
There has been much interest in integrating various inorganic nanoparticles (nanoscale colloids) in biology and medicine. However, buildup of a protein corona around the nanoparticles in biological media, driven by nonspecific interactions, remains a major hurdle for the translation of nanomedicine into clinical applications. In this study, we investigate the interactions between gold nanoparticles and serum proteins using a series of dihydrolipoic acid (DHLA)-based ligands. We employed gel electrophoresis combined with UV-vis absorption and dynamic light scattering to correlate protein adsorption with the nature and size of the ligand used. For instance, we found that AuNPs capped with DHLA alone promote nonspecific protein adsorption. In comparison, capping AuNPs with polyethylene glycol- or zwitterion-appended DHLA essentially prevents corona formation, regardless of ligand charge and size. Our results highlight the crucial role of surface chemistry and core material in protein corona formation and offer valuable information for the design of colloidal nanomaterials for biological applications.
Collapse
Affiliation(s)
- Narjes Dridi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Woody Perng
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
3
|
Wang X, Meng X, Mao K, Chen H, Cong X, Liu F, Wang J, Liu S, Xin Y, Zhu G, Tan H, Yang YG, Sun T. Maleimide as the PEG end-group promotes macrophage-targeted drug delivery of PEGylated nanoparticles in vivo by enhancing interaction with circulating erythrocytes. Biomaterials 2023; 300:122187. [PMID: 37302279 DOI: 10.1016/j.biomaterials.2023.122187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Radiotherapy (IR) is capable of enhancing antitumor immune responses. However, IR treatment also aggravates the infiltration of peripheral macrophages into the tumor, resulting in reversing the therapeutic effects of antitumor immunity. Thus, a strategy to effectively prevent tumor infiltration by macrophages may further improved the therapeutic efficacy of radiotherapy. Herein, we found that PEGylated solid lipid nanoparticles with maleimide as PEG end-group (SLN-PEG-Mal) show significantly enhanced adsorption onto RBCs through reacting with reactive sulfhydryl groups on RBCs' surface both in vitro and in vivo, and caused significant changes in the surface properties and morphology of RBCs. These RBCs adsorbed by SLN-PEG-Mal were rapidly removed from circulation due to efficient engulfment by reticuloendothelial macrophages, supporting the usefulness of SLN-PEG-Mal for macrophage-targeted drug delivery. While lacking the use of radioisotope tracing (considered the gold standard for PK/BD studies), our data align with the expected pathway of host defense activation through surface-loaded RBCs. Importantly, injection of paclitaxel-loaded SLN-PEG-Mal effectively inhibited the tumor-infiltration by macrophages, and significantly improved the antitumor immune responses in tumor-bearing mice treated with low-dose irradiation. This study provides insights into the effects of maleimide as PEG end-group on enhancing the interaction between PEGylated nanoparticles and RBCs and offers an effective strategy to inhibit tumor infiltration by circulating macrophages.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; Medical Laboratory Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Hongmei Chen
- Department of Oncology Chemotherapy, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Feiqi Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Ge Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Huizhu Tan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
4
|
Jin Z, Yeung J, Zhou J, Retout M, Yim W, Fajtová P, Gosselin B, Jabin I, Bruylants G, Mattoussi H, O'Donoghue AJ, Jokerst JV. Empirical Optimization of Peptide Sequence and Nanoparticle Colloidal Stability: The Impact of Surface Ligands and Implications for Colorimetric Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20483-20494. [PMID: 37058597 PMCID: PMC10614165 DOI: 10.1021/acsami.3c00862] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Surface ligands play a critical role in controlling and defining the properties of colloidal nanocrystals. These aspects have been exploited to design nanoparticle aggregation-based colorimetric sensors. Here, we coated 13-nm gold nanoparticles (AuNPs) with a large library of ligands (e.g., from labile monodentate monomers to multicoordinating macromolecules) and evaluated their aggregation propensity in the presence of three peptides containing charged, thiolate, or aromatic amino acids. Our results show that AuNPs coated with the polyphenols and sulfonated phosphine ligands were good choices for electrostatic-based aggregation. AuNPs capped with citrate and labile-binding polymers worked well for dithiol-bridging and π-π stacking-induced aggregation. In the example of electrostatic-based assays, we stress that good sensing performance requires aggregating peptides of low charge valence paired with charged NPs with weak stability and vice versa. We then present a modular peptide containing versatile aggregating residues to agglomerate a variety of ligated AuNPs for colorimetric detection of the coronavirus main protease. Enzymatic cleavage liberates the peptide segment, which in turn triggers NP agglomeration and thus rapid color changes in <10 min. The protease detection limit is 2.5 nM.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Maurice Retout
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Bryan Gosselin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevel 50, CP160/06, B-1050 Brussels, Belgium
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevel 50, CP160/06, B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Jin Z, Dridi N, Palui G, Palomo V, Jokerst JV, Dawson PE, Amy Sang QX, Mattoussi H. Evaluating the Catalytic Efficiency of the Human Membrane-type 1 Matrix Metalloproteinase (MMP-14) Using AuNP-Peptide Conjugates. J Am Chem Soc 2023; 145:4570-4582. [PMID: 36802544 DOI: 10.1021/jacs.2c12032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Interactions of plasmonic nanocolloids such as gold nanoparticles and nanorods with proximal dye emitters result in efficient quenching of the dye photoluminescence (PL). This has become a popular strategy for developing analytical biosensors relying on this quenching process for signal transduction. Here, we report on the use of stable PEGylated gold nanoparticles, covalently coupled to dye-labeled peptides, as sensitive optically addressable sensors for determining the catalytic efficiency of the human matrix metalloproteinase-14 (MMP-14), a cancer biomarker. We exploit real-time dye PL recovery triggered by MMP-14 hydrolysis of the AuNP-peptide-dye to extract quantitative analysis of the proteolysis kinetics. Sub-nanomolar limit of detections for MMP-14 has been achieved using our hybrid bioconjugates. In addition, we have used theoretical considerations within a diffusion-collision framework to derive enzyme substrate hydrolysis and inhibition kinetics equations, which allowed us to describe the complexity and irregularity of enzymatic proteolysis of nanosurface-immobilized peptide substrates. Our findings offer a great strategy for the development of highly sensitive and stable biosensors for cancer detection and imaging.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Narjes Dridi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Goutam Palui
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Valle Palomo
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, Materials Science and Engineering Program, and Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
6
|
Jin Z, Dridi N, Palui G, Palomo V, Jokerst JV, Dawson PE, Sang QXA, Mattoussi H. Quantum Dot-Peptide Conjugates as Energy Transfer Probes for Sensing the Proteolytic Activity of Matrix Metalloproteinase-14. Anal Chem 2023; 95:2713-2722. [PMID: 36705737 DOI: 10.1021/acs.analchem.2c03400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We detail the assembly and characterization of quantum dot (QD)-dye conjugates constructed using a peptide bridge specifically designed to recognize and interact with a breast cancer biomarker─matrix metalloproteinase-14 (MMP-14). The assembled QD conjugates are then used as optically addressable probes, relying on Förster resonance energy transfer (FRET) interactions as a transduction mechanism to detect the activity of MMP-14 in solution phase. The QDs were first coated with dithiolane poly(ethylene glycol) (PEG) bearing a carboxyl group that allows coupling via amide bond formation with different dye-labeled peptides. The analytical capability of the conjugates is enabled by correlating changes in the FRET efficiency with the conjugate valence and/or QD-to-dye separation distance, triggered and modulated by enzymatic proteolysis of surface-tethered peptides. The FRET probe exhibits great sensitivity to enzyme digestion with sub-nanomolar limit of detection. We further analyze the proteolysis data within the framework of the Michaelis-Menten model, which considers the fact that surface-attached peptides have a slower diffusion coefficient than free peptides. This results in reduced collision frequency and lower catalytic efficiency, kcat/KM. Our results suggest that our conjugate design is promising, effective, and potentially useful for in vivo analysis.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Narjes Dridi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Goutam Palui
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Valle Palomo
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Phillip E Dawson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
7
|
Jin Z, Ling C, Li Y, Zhou J, Li K, Yim W, Yeung J, Chang YC, He T, Cheng Y, Fajtová P, Retout M, O'Donoghue AJ, Jokerst JV. Spacer Matters: All-Peptide-Based Ligand for Promoting Interfacial Proteolysis and Plasmonic Coupling. NANO LETTERS 2022; 22:8932-8940. [PMID: 36346642 DOI: 10.1021/acs.nanolett.2c03052] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plasmonic coupling via nanoparticle assembly is a popular signal-generation method in bioanalytical sensors. Here, we customized an all-peptide-based ligand that carries an anchoring group, polyproline spacer, biomolecular recognition, and zwitterionic domains for functionalizing gold nanoparticles (AuNPs) as a colorimetric enzyme sensor. Our results underscore the importance of the polyproline module, which enables the SARS-CoV-2 main protease (Mpro) to recognize the peptidic ligand on nanosurfaces for subsequent plasmonic coupling via Coulombic interactions. AuNP aggregation is favored by the lowered surface potential due to enzymatic unveiling of the zwitterionic module. Therefore, this system provides a naked-eye measure for Mpro. No proteolysis occurs on AuNPs modified with a control ligand lacking a spacer domain. Overall, this all-peptide-based ligand does not require complex molecular conjugations and hence offers a simple and promising route for plasmonic sensing other proteases.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Chuxuan Ling
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Yi Li
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ke Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore 138634
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Yong Cheng
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Maurice Retout
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Jin Z, Yeung J, Zhou J, Cheng Y, Li Y, Mantri Y, He T, Yim W, Xu M, Wu Z, Fajtova P, Creyer MN, Moore C, Fu L, Penny WF, O'Donoghue AJ, Jokerst JV. Peptidic Sulfhydryl for Interfacing Nanocrystals and Subsequent Sensing of SARS-CoV-2 Protease. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:1259-1268. [PMID: 37406055 PMCID: PMC8791034 DOI: 10.1021/acs.chemmater.1c03871] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a need for surveillance of COVID-19 to identify individuals infected with SARS-CoV-2 coronavirus. Although specific, nucleic acid testing has limitations in terms of point-of-care testing. One potential alternative is the nonstructural protease (nsp5, also known as Mpro/3CLpro) implicated in SARS-CoV-2 viral replication but not incorporated into virions. Here, we report a divalent substrate with a novel design, (Cys)2-(AA)x-(Asp)3, to interface gold colloids in the specific presence of Mpro leading to a rapid and colorimetric readout. Citrate- and tris(2-carboxyethyl)phosphine (TCEP)-AuNPs were identified as the best reporter out of the 17 ligated nanoparticles. Furthermore, we empirically determined the effects of varying cysteine valence and biological media on the sensor specificity and sensitivity. The divalent peptide was specific to Mpro, that is, there was no response when tested with other proteins or enzymes. Furthermore, the Mpro detection limits in Tris buffer and exhaled breath matrices are 12.2 and 18.9 nM, respectively, which are comparable to other reported methods (i.e., at low nanomolar concentrations) yet with a rapid and visual readout. These results from our work would provide informative rationales to design a practical and noninvasive alternative for COVID-19 diagnostic testing-the presence of viral proteases in biofluids is validated.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yi Li
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yash Mantri
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Ming Xu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Zhuohong Wu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtova
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Matthew N Creyer
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Colman Moore
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lei Fu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - William F Penny
- Division of Cardiology, University of California San Diego, San Diego, California 92161, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, Materials Science and Engineering Program, and Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Xu M, Yim W, Zhou J, Zhou J, Jin Z, Moore C, Borum R, Jorns A, Jokerst JV. The Application of Organic Nanomaterials for Bioimaging, Drug Delivery, and Therapy: Spanning Various Domains. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2021.3081758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Beard MC, Peng X, Hens Z, Weiss EA. Introduction to special issue: Colloidal quantum dots. J Chem Phys 2021; 153:240401. [PMID: 33380102 DOI: 10.1063/5.0039506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Matthew C Beard
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Xiaogang Peng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zeger Hens
- Center for Nano and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
11
|
Wang S, Du L, Jin Z, Xin Y, Mattoussi H. Enhanced Stabilization and Easy Phase Transfer of CsPbBr3 Perovskite Quantum Dots Promoted by High-Affinity Polyzwitterionic Ligands. J Am Chem Soc 2020; 142:12669-12680. [DOI: 10.1021/jacs.0c03682] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sisi Wang
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Liang Du
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Zhicheng Jin
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Yan Xin
- Florida State University, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Hedi Mattoussi
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
12
|
Zhang C, Jin Z, Zeng B, Wang W, Palui G, Mattoussi H. Characterizing the Brownian Diffusion of Nanocolloids and Molecular Solutions: Diffusion-Ordered NMR Spectroscopy vs Dynamic Light Scattering. J Phys Chem B 2020; 124:4631-4650. [DOI: 10.1021/acs.jpcb.0c02177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chengqi Zhang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Birong Zeng
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Wentao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Goutam Palui
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
13
|
Hashem EM, Ahmed MA, Abdel Messih MF. Facile one-pot aqueous synthesis of highly soluble and luminescent CdSe quantum dots without nitrogen bubbling. CrystEngComm 2020. [DOI: 10.1039/d0ce00778a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CdSe quantum dots (QDs) have been widely used in a plethora of applications due to their relatively high photocatalytic abilities and unique properties.
Collapse
Affiliation(s)
| | - M. A. Ahmed
- Chemistry Department
- Faculty of Science
- Ain-Shams University
- Cairo
- Egypt
| | | |
Collapse
|