1
|
Garoufalis CS, Hayrapetyan DB, Sarkisyan HA, Mantashyan PA, Zeng Z, Galanakis I, Bester G, Steenbock T, Baskoutas S. Optical gain and entanglement through dielectric confinement and electric field in InP quantum dots. NANOSCALE 2024; 16:8447-8454. [PMID: 38577736 DOI: 10.1039/d3nr06679g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Quantum dots are widely recognized for their advantageous light-emitting properties. Their excitonic fine structure along with the high quantum yields offers a wide range of possibilities for technological applications. However, especially for the case of colloidal QDs, there are still characteristics and properties which are not adequately controlled and downgrade their performance for applications which go far beyond the simple light emission. Such a challenging task is the ability to manipulate the energetic ordering of exciton and biexciton emission and subsequently control phenomena such as Auger recombination, optical gain and photon entanglement. In the present work we attempt to engineer this ordering for the case of InP QDs embedded in polymer matrix, by means of their size, the dielectric confinement and external electric fields. We employ well tested, state of the art theoretical methods, in order to explore the conditions under which the exciton-biexciton configuration creates the desired conditions either for optical gain or photon entanglement. Indeed, this appears to be feasible for QDs with small diameters (1 nm, 1.5 nm) embedded in a host material with high dielectric constant and additional external electric fields. These findings offer a new design principle which might be complementary to the well-established type II core-shell QDs approach for achieving electron-hole separation.
Collapse
Affiliation(s)
| | - David B Hayrapetyan
- Department of General Physics and Quantum Nanostructures, Russian-Armenian University, 123 Hovsep Emin Str., Yerevan 0051, Armenia
- Institute of Chemical Physics after A.B. Nalbandyan of NAS RA, 5/2 Paruyr Sevak St., Yerevan 0014, Armenia
| | - Hayk A Sarkisyan
- Department of General Physics and Quantum Nanostructures, Russian-Armenian University, 123 Hovsep Emin Str., Yerevan 0051, Armenia
| | - Paytsar A Mantashyan
- Department of General Physics and Quantum Nanostructures, Russian-Armenian University, 123 Hovsep Emin Str., Yerevan 0051, Armenia
- Institute of Chemical Physics after A.B. Nalbandyan of NAS RA, 5/2 Paruyr Sevak St., Yerevan 0014, Armenia
| | - Zaiping Zeng
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, and School of Materials Science and Engineering, Henan University, Kaifeng, Henan 475001, China
| | - Iosif Galanakis
- Materials Science Department, University of Patras, 26504 Patras, Greece.
| | - Gabriel Bester
- Institut für Physikalische Chemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Torben Steenbock
- Institut für Physikalische Chemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Sotirios Baskoutas
- Materials Science Department, University of Patras, 26504 Patras, Greece.
- Institut für Physikalische Chemie, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
2
|
Wang Y, Liang P, Men Y, Jiang M, Cheng L, Li J, Jia T, Sun Z, Feng D. Light-induced photoluminescence enhancement in chiral CdSe quantum dot films. J Chem Phys 2024; 160:161102. [PMID: 38651809 DOI: 10.1063/5.0201365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
Chiral quantum dots (QDs) are promising materials applied in many areas, such as chiral molecular recognition and spin selective filter for charge transport, and can be prepared by facile ligand exchange approaches. However, ligand exchange leads to an increase in surface defects and reduces the efficiencies of radiative recombination and charge transport, which restricts further applications. Here, we investigate the light-induced photoluminescence (PL) enhancement in chiral L- and D-cysteine CdSe QD thin films, providing a strategy to increase the PL. The PL intensity of chiral CdSe QD films can be significantly enhanced over 100 times by continuous UV laser irradiation, indicating a strong passivation of surface defects upon laser irradiation. From the comparative measurements of the PL intensity evolutions in vacuum, dry oxygen, air, and humid nitrogen atmospheres, we conclude that the mechanism of PL enhancement is photo-induced surface passivation with the assistance of water molecules.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Pan Liang
- College of Arts and Sciences, Shanghai Dianji University, Shanghai 201306, China
| | - Yumeng Men
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Meizhen Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Lin Cheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jinlei Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Tianqing Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Donghai Feng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Huang W, Zhong J, Sheng W, Zhou A. Tuning of excitons in phosphorene atomic chains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:075301. [PMID: 37879347 DOI: 10.1088/1361-648x/ad06f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
An universal scaling between the exciton binding energy and quasiparticle (QP) band gap was first discovered in two-dimensional (2D) semiconductors such as graphene derivatives, various transition materials dichalcogenides, and black phosphorus (Choiet al2015Phys. Rev. Lett.115066403; Jianget al2017Phys. Rev. Lett.118266401), and later extended to quasi one-dimensional (1D) systems such as carbon nanotubes and graphene nanoribbons. In this work we study the excitonic states in phosphorene atomic chains by using the exact diagonalization method and show that the linear scaling between the exciton binding energy (Ex) and QP shift (Δqs) can be easily tuned by the dielectric environment. In the presence of weak screening,Exis seen to increase withΔqsand exhibits a similar scaling as those 2D materials. As the screening becomes stronger, however, the dependence is found to be reversed, i.e.Exnow decreases whenΔqsincreases. More interestingly, we also reveal thatExmay even become nearly constant, independent on the system dimension andΔqswhen the screening reaches a certain strength. These abnormal scaling relations are attributed to the complex nature of excitons in the strongly correlated 1D system.
Collapse
Affiliation(s)
- Wenzhuo Huang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Jun Zhong
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Weidong Sheng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Aiping Zhou
- Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, People's Republic of China
| |
Collapse
|
4
|
Steenbock T, Dittmann T, Kumar S, Bester G. Ligand-Induced Symmetry Breaking as the Origin of Multiexponential Photoluminescence Decay in CdSe Quantum Dots. J Phys Chem Lett 2023; 14:8859-8866. [PMID: 37756012 DOI: 10.1021/acs.jpclett.3c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The bright photoluminescence (PL) of colloidal CdSe quantum dots (QDs) makes them interesting for optical applications. For most of them, well-defined PL properties, dominated by a single excitonic state, are required. However, in many PL experiments with QD ensembles, multiexponential decay was observed. On the basis of spin-orbit density functional theory and screened configuration interaction calculations, we show that highly symmetric and defect-free CdSe QDs with diameters of 1.7 and 2.0 nm possess a multiexponential low-temperature PL at the single-dot level. This is a consequence of ligand-induced symmetry breaking with a subsequent rearrangement of the lowest eight excitonic states in two sets of four singly degenerate excitonic states. For each set, the lowest state is dark and the other three are bright. We find that the splitting between the sets can be modified by the coverage and choice of the ligand, which facilitates the engineering of the PL properties of CdSe QDs.
Collapse
Affiliation(s)
- Torben Steenbock
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Tobias Dittmann
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Surender Kumar
- Department of Chemistry, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Gabriel Bester
- Department of Chemistry and Physics, University of Hamburg, HARBOR, Building 610, Luruper Chaussee 149, Hamburg 22761, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
5
|
Díaz-Cruz EB, Regalado-Pérez E, Santos J, Hu H. Development of SnS/PVP core/shell quantum dots with tunable color emission synthesized by microwave heating. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Beard MC, Peng X, Hens Z, Weiss EA. Introduction to special issue: Colloidal quantum dots. J Chem Phys 2021; 153:240401. [PMID: 33380102 DOI: 10.1063/5.0039506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Matthew C Beard
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Xiaogang Peng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zeger Hens
- Center for Nano and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|