1
|
Ashraf S, Liu Y, Wei H, Shen R, Zhang H, Wu X, Mehdi S, Liu T, Li B. Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303031. [PMID: 37356067 DOI: 10.1002/smll.202303031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Indexed: 06/27/2023]
Abstract
Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well-alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd-based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser-based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.
Collapse
Affiliation(s)
- Saima Ashraf
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, P. R. China
| | - Huijuan Wei
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Zhao H, Liu K, Zhou L, Zhang T, Han Z, Wang L, Ji X, Cui Y, Hu J, Ma G. Platinum Palladium Bimetallic Nanozymes Stabilized with Vancomycin for the Sensitive Colorimetric Determination of L-cysteine. Biomolecules 2023; 13:1254. [PMID: 37627319 PMCID: PMC10452367 DOI: 10.3390/biom13081254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Many diseases in the human body are related to the level of L-cysteine. Therefore, it is crucial to establish an efficient, simple and sensitive platform for L-cysteine detection. In this work, we synthesized platinum palladium bimetallic nanoparticles (Van-Ptm/Pdn NPs) using vancomycin hydrochloride (Van) as a stabilizer, which exhibited high oxidase-like catalytic activity. In addition, the catalytic kinetics of the Van-Pt1/Pd1 NPs followed the typical Michaelis-Menten equation, exhibiting a strong affinity for 3,3',5,5'-tetramethylbenzidine substrates. More importantly, we developed a simple and effective strategy for the sensitive colorimetric detection of L-cysteine using biocompatible Van-Pt1/Pd1 NPs. The detection limit was low, at 0.07 μM, which was lower than the values for many previously reported enzyme-like detection systems. The colorimetric method of the L-cysteine assay had good selectivity. The established method for the detection of L-cysteine showed promise for biomedical analysis.
Collapse
Affiliation(s)
- Han Zhao
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Kai Liu
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Lijie Zhou
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Tingting Zhang
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Zengsheng Han
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Longgang Wang
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Xianbing Ji
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (X.J.); (Y.C.)
| | - Yanshuai Cui
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China; (X.J.); (Y.C.)
| | - Jie Hu
- Hebei Key Laboratory of Nano-Biotechnology, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (H.Z.); (K.L.); (L.Z.); (T.Z.); (J.H.)
| | - Guanglong Ma
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| |
Collapse
|
3
|
Microscopic mechanisms of cooperative communications within single nanocatalysts. Proc Natl Acad Sci U S A 2022; 119:2115135119. [PMID: 35022239 PMCID: PMC8784103 DOI: 10.1073/pnas.2115135119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/30/2023] Open
Abstract
Catalysis is an experimental approach to accelerate chemical reactions. It plays a critical role in modern industries. Recent experimental studies uncovered striking observations of cooperative communications for reactions on nanocatalysts. In these experiments, it was shown that the chemical reactions observed at specific active sites might effectively stimulate the same reactions at the neighboring sites. We developed a theoretical model to investigate the microscopic mechanisms of these phenomena. Our idea is that the catalytic communication is the result of the complex dynamics of charged holes. Explicit calculations are able to quantitatively explain all experimental observations, clarifying the molecular origin of cooperative communications. The presented theoretical framework might be utilized for developing efficient catalytic systems with better control over chemical reactions. Catalysis is a method of accelerating chemical reactions that is critically important for fundamental research as well as for industrial applications. It has been recently discovered that catalytic reactions on metal nanoparticles exhibit cooperative effects. The mechanism of these observations, however, remains not well understood. In this work, we present a theoretical investigation on possible microscopic origin of cooperative communications in nanocatalysts. In our approach, the main role is played by positively charged holes on metal surfaces. A corresponding discrete-state stochastic model for the dynamics of holes is developed and explicitly solved. It is shown that the observed spatial correlation lengths are given by the average distances migrated by the holes before they disappear, while the temporal memory is determined by their lifetimes. Our theoretical approach is able to explain the universality of cooperative communications as well as the effect of external electric fields. Theoretical predictions are in agreement with experimental observations. The proposed theoretical framework quantitatively clarifies some important aspects of the microscopic mechanisms of heterogeneous catalysis.
Collapse
|
4
|
PVP-stabilized PtRu nanozymes with peroxidase-like activity and its application for colorimetric and fluorometric glucose detection. Colloids Surf B Biointerfaces 2021; 204:111783. [PMID: 33940519 DOI: 10.1016/j.colsurfb.2021.111783] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/24/2022]
Abstract
Nanozymes have significant advantages over natural enzymes. The intrinsic peroxidase-like activity of Pt-based nanomaterials can be enhanced by alloying with other transition metals, such as Ru, that have great catalytic activity. In this study, we used polyvinylpyrrolidone (PVP) to synthesize well-dispersed and homogeneous nanostructures. PVP-stabilized Pt-Ru nanozymes (PVP/PtRu NZs) were synthesized and characterized. The PVP/PtRu NZs had an average size of 3.54 ± 0.84 nm and exhibited an intense peroxidase-like activity. The PVP/PtRu NZs were used as peroxidase mimics for colorimetric and fluorometric glucose determination by the glucose oxidase and PVP/PtRu NZs cascade reaction. In the colorimetric assay, the linearly detectable range was 0.25-3.0 mM, with an R2 and limit of detection (LOD) of 0.988 and 138 μM, respectively. In the fluorometric assay, a linear relationship was found when the glucose concentration was between 5.0 and 300 μM (R2 = 0.997), with an LOD of 1.11 μM. Compared to the colorimetric assay, the fluorometric assay had greater sensitivity and a lower detection limit for the determination of glucose. Moreover, the PVP/PtRu NZs had high storage stability over a month and great recovery values in human serum and artificial urine, with a range of 94-106 %. From these results, PVP/PtRu NZs are expected to be used as promising peroxidase mimics in various fields such as biosensing, pharmaceutical processing, and the food industry.
Collapse
|