Gisbert VG, Garcia R. Fast and high-resolution mapping of van der Waals forces of 2D materials interfaces with bimodal AFM.
NANOSCALE 2023;
15:19196-19202. [PMID:
37982209 DOI:
10.1039/d3nr05274e]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
High-spatial resolution mapping of van der Waals forces is relevant in several fields ranging from nanotechnology to colloidal science. The emergence of two-dimensional heterostructures assembled by van der Waals interactions has enhanced the interest of those measurements. Several AFM methods have been developed to measure the adhesion force between an AFM probe and the material of interest. However, a reliable and high-resolution method to measure the Hamaker constant remains elusive. We demonstrate that an atomic force microscope operated in a bimodal configuration enables fast, quantitative, and high-resolution mapping of the Hamaker constant of interfaces. The method is applied to map the Hamaker constant of monolayer, bilayer and multilayer MoS2 surfaces. Those interfaces are characterized with Hamaker constant and spatial resolutions of, respectively, 0.1 eV and 50 nm.
Collapse