1
|
Elibol K, van Aken PA. Hybrid Graphene-Supported Aluminum Plasmonics. ACS NANO 2022; 16:11931-11943. [PMID: 35904978 PMCID: PMC9413403 DOI: 10.1021/acsnano.2c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Controlled fabrication of devices for plasmonics on suspended graphene enables obtaining tunable localized surface plasmon resonances (LSPRs), reducing the red-shift of LSPRs, and creating hybrid 3D-2D systems promising for adjustable dipole-dipole coupling and plasmon-mediated catalysis. Here, we apply a low-cost fabrication methodology to produce patterned aluminum nanostructures (bowties and tetramers) on graphene monolayers via electron-beam lithography and trap platinum (Pt) nanoclusters (NCs) within their hotspots by thermal annealing. We reveal the LSPRs of aluminum plasmonics on graphene using electron energy-loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFTEM) in a monochromated scanning transmission electron microscope (STEM). The LSPRs of these nanostructures are measured to be between visible and ultraviolet regions of the spectrum and are confirmed by electromagnetic simulations. The antibonding dipole and bonding dipole modes of both structures are tuned by controlling their gap size. The tetramers enable the simultaneous excitation of both antibonding and bonding dipole modes at the poles of nanoprisms, while bowties allow us to excite these modes separately either at the poles or within the hotspot. We further show that the hybrid nanocavity-NC systems are in the intermediate coupling regime providing an enhanced plasmon absorption in the Pt NCs via the energy transfer from the antibonding dipole mode to the Pt NCs. The dipole LSPR of Pt NCs also couples to the bonding-type breathing mode in bowties. Our findings suggest that these hybrid nanocavity-graphene systems are of high application potential for plasmon-mediated catalysis, surface-enhanced fluorescence, and quantum technologies.
Collapse
|
2
|
Cortés E, Govorov AO, Misawa H, Willets KA. Special topic on emerging directions in plasmonics. J Chem Phys 2020; 153:010401. [PMID: 32640808 DOI: 10.1063/5.0017914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Plasmonics enables a wealth of applications, including photocatalysis, photoelectrochemistry, photothermal heating, optoelectronic devices, and biological and chemical sensing, while encompassing a broad range of materials, including coinage metals, doped semiconductors, metamaterials, 2D materials, bioconjugates, and chiral assemblies. Applications in plasmonics benefit from the large local electromagnetic field enhancements generated by plasmon excitation, as well as the products of plasmon decay, including photons, hot charge carriers, and heat. This special topic highlights recent work in both theory and experiment that advance our fundamental understanding of plasmon excitation and decay mechanisms, showcase new applications enabled by plasmon excitation, and highlight emerging classes of materials that support plasmon excitation.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universitat (LMU), 80539 Munich, Germany
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
| | - Hiroaki Misawa
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan and Center for Emergent Functional Matter Science, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Katherine A Willets
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
3
|
Stetsenko M, Margitych T, Kryvyi S, Maksimenko L, Hassan A, Filonenko S, Li Β, Qu J, Scheer E, Snegir S. Gold Nanoparticle Self-Aggregation on Surface with 1,6-Hexanedithiol Functionalization. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E512. [PMID: 32168942 PMCID: PMC7153467 DOI: 10.3390/nano10030512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/02/2022]
Abstract
Here we study the morphology and the optical properties of assemblies made of small (17 nm) gold nanoparticles (AuNPs) directly on silicon wafers coated with (3-aminopropyl)trimethoxysilane (APTES). We employed aliphatic 1,6-hexanedithiol (HDT) molecules to cross-link AuNPs during a two-stage precipitation procedure. The first immersion of the wafer in AuNP colloidal solution led mainly to the attachment of single particles with few inclusions of dimers and small aggregates. After the functionalization of precipitated NPs with HDT and after the second immersion in the colloidal solution of AuNP, we detected a sharp rise in the number of aggregates compared to single AuNPs and their dimers. The lateral size of the aggregates was about 100 nm, while some of them were larger than 1μm. We propose that the uncompensated dipole moment of the small aggregates appeared after the first precipitation and acts further as the driving force accelerating their further growth on the surface during the second precipitation. By having such inhomogeneous surface coating, the X-ray reciprocal space maps and modulation polarimetry showed well-distinguished signals from the single AuNPs and their dimers. From these observations, we concluded that the contribution from aggregated AuNPs does not hamper the detection and investigation of plasmonic effects for AuNP dimers. Meantime, using unpolarized and polarized light spectroscopy, the difference in the optical signals between the dimers, being formed because of self-aggregation and the one being cross-linked by means of HDT, was not detected.
Collapse
Affiliation(s)
- Maksym Stetsenko
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine; (S.K.); (L.M.)
| | - Tetiana Margitych
- Kyiv Institute for Nuclear Research, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Serhii Kryvyi
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine; (S.K.); (L.M.)
- Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Lidia Maksimenko
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine; (S.K.); (L.M.)
| | - Ali Hassan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
| | - Svitlana Filonenko
- Pisarzhevski Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 31 Prospect Nauky, 03028 Kiev, Ukraine;
| | - Βaikui Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (M.S.); (A.H.)
| | - Elke Scheer
- University of Konstanz, Department of Physics, Universitätsstraße 10, 78464 Konstanz, Germany;
| | - Sergii Snegir
- University of Konstanz, Department of Physics, Universitätsstraße 10, 78464 Konstanz, Germany;
| |
Collapse
|