1
|
Panariti D, Carella A, Ciuti S, Barbon A, Holzer N, Poddutoori PK, Kandrashkin YE, van der Est A, Di Valentin M. Long-lived light-induced electron spin polarization in porphyrin triplet states and the dynamic Jahn-Teller effect. J Chem Phys 2025; 162:114201. [PMID: 40094235 DOI: 10.1063/5.0252227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
The time dependence of the light-induced spin polarization of a series of porphyrins is reported. The porphyrins contain central elements from three distinct groups in the Periodic Table with different oxidation states, types, and numbers of axial ligands, as well as different peripheral substituents on the porphyrin ring. Shortly after photoexcitation, in all cases, the primary multiplet polarization of the porphyrin triplet state evolves into long-lived net polarization whose lifetime is determined by the lifetime of the triplet state. The zero-field splitting parameters and sign of the multiplet polarization vary significantly among the porphyrins, but the transient EPR spectra taken at later times are remarkably similar. The development of long-lived net polarization is proposed to involve the dynamic Jahn-Teller effect, in which hopping between the two lowest triplet states occurs.
Collapse
Affiliation(s)
- D Panariti
- Department of Chemical Sciences, University of Padova, Marzolo 1, 35131 Padua, Italy
| | - A Carella
- Department of Chemical Sciences, University of Padova, Marzolo 1, 35131 Padua, Italy
| | - S Ciuti
- Department of Chemical Sciences, University of Padova, Marzolo 1, 35131 Padua, Italy
| | - A Barbon
- Department of Chemical Sciences, University of Padova, Marzolo 1, 35131 Padua, Italy
| | - N Holzer
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | - P K Poddutoori
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | - Y E Kandrashkin
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, Kazan 420029, Russian Federation
| | - A van der Est
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - M Di Valentin
- Department of Chemical Sciences, University of Padova, Marzolo 1, 35131 Padua, Italy
| |
Collapse
|
2
|
Privitera A, Chiesa A, Santanni F, Carella A, Ranieri D, Caneschi A, Krzyaniak MD, Young RM, Wasielewski MR, Carretta S, Sessoli R. Room-Temperature Optical Spin Polarization of an Electron Spin Qudit in a Vanadyl-Free Base Porphyrin Dimer. J Am Chem Soc 2025; 147:331-341. [PMID: 39681297 PMCID: PMC11726572 DOI: 10.1021/jacs.4c10632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Photoexcited organic chromophores appended to molecular qubits can serve as a source of spin initialization or multilevel qudit generation for quantum information applications. So far, this approach has been primarily investigated in chromophore-stable radical systems. Here, we extend this concept to a meso-meso linked oxovanadium(IV) porphyrin-free-base porphyrin dimer. Femtosecond transient absorption experiments reveal that photoexcitation of the free-base porphyrin leads to picosecond triplet state formation via enhanced intersystem crossing. Time-resolved electron paramagnetic resonance (TREPR) experiments carried out at both 85 K and room temperature reveal the formation of a long-lived spin-polarized quartet state through triplet-doublet spin mixing. Notably, a distinct hyperfine structure arising from the interaction between the electron spin quartet state and the vanadyl nucleus (51V, I = 7/2) is evident, with the quartet state showing long-lived spin polarization even at room temperature. Theoretical simulations of the TREPR spectra confirm the photogenerated quartet state and provide insights into the non-Boltzmann spin populations. Exploiting this phenomenon affords the possibility of using photoinduced triplet states in porphyrins for quantum information as a resource to polarize and magnetically couple molecular electronic or nuclear spin qubits and qudits.
Collapse
Affiliation(s)
- Alberto Privitera
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Paula
M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department
of Industrial Engineering, University of
Florence & UdR INSTM Firenze, 50139 Firenze, Italy
| | - Alessandro Chiesa
- Department
of Mathematical, Physical and Computer Sciences, University of Parma & UdR INSTM Parma, 43124 Parma, Italy
- INFN-Sezione
di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
| | - Fabio Santanni
- Department
of Chemistry “U. Schiff”, University of Florence & UdR INSTM Firenze, 50019 Sesto Fiorentino, Italy
| | - Angelo Carella
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Paula
M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department
of Chemical Sciences, University of Padova, 35134 Padua, Italy
| | - Davide Ranieri
- Department
of Chemistry “U. Schiff”, University of Florence & UdR INSTM Firenze, 50019 Sesto Fiorentino, Italy
| | - Andrea Caneschi
- Department
of Industrial Engineering, University of
Florence & UdR INSTM Firenze, 50139 Firenze, Italy
| | - Matthew D. Krzyaniak
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Paula
M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M. Young
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Paula
M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Paula
M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Stefano Carretta
- Department
of Mathematical, Physical and Computer Sciences, University of Parma & UdR INSTM Parma, 43124 Parma, Italy
- INFN-Sezione
di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
| | - Roberta Sessoli
- Department
of Chemistry “U. Schiff”, University of Florence & UdR INSTM Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Bertran A, Ciuti S, Panariti D, Rogers CJ, Wang H, Zhao J, Timmel CR, Gobbo M, Barbon A, Di Valentin M, Bowen AM. I 2BODIPY as a new photoswitchable spin label for light-induced pulsed EPR dipolar spectroscopy exploiting magnetophotoselection. Phys Chem Chem Phys 2024; 26:28398-28405. [PMID: 39503351 PMCID: PMC11563202 DOI: 10.1039/d4cp02297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/27/2024] [Indexed: 11/17/2024]
Abstract
Electron paramagnetic resonance (EPR) pulsed dipolar spectroscopy (PDS) using triplet states of organic molecules is a growing area of research due to the favourable properties that these transient states may afford over stable spin centers, such as switchability, increased signal intensity when the triplet is formed in a non-Boltzmann distribution and the triplet signal is used for detection, and high orientation selection, when the triplet signal is probed by microwave pulses. This arises due to the large spectral width at low fields, a result of the large zero field splitting, and limited bandwidth of microwave pulses used. Here we propose the triplet state of a substituted BODIPY moiety as a spin label in light induced PDS, coupled to a nitroxide, in a model peptide with a rigid structure. Orientation selection allows information on the relative position of the centres of the two labels to be obtained with respect to the nitroxide reference frame. Additionally, magnetophotoselection effects are employed to introduce optical selection and additional constraints for the determination of the relative orientation of the spin labels considering the reference frame of the triplet state.
Collapse
Affiliation(s)
- Arnau Bertran
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Susanna Ciuti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy.
- Department of Chemistry, Photon Science Institute and The National Research Facility for Electron Paramagnetic Resonance, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Daniele Panariti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy.
| | - Ciarán J Rogers
- Department of Chemistry, Photon Science Institute and The National Research Facility for Electron Paramagnetic Resonance, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Haiqing Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Christiane R Timmel
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Marina Gobbo
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy.
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy.
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy.
| | - Alice M Bowen
- Department of Chemistry, Photon Science Institute and The National Research Facility for Electron Paramagnetic Resonance, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
4
|
Medagedara H, Teferi MY, Wanasinghe ST, Burson W, Kizi S, Zaslona B, Mardis KL, Niklas J, Poluektov OG, Rury AS. Decorrelated singlet and triplet exciton delocalization in acetylene-bridged Zn-porphyrin dimers. Chem Sci 2024; 15:1736-1751. [PMID: 38303928 PMCID: PMC10829018 DOI: 10.1039/d3sc03327a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024] Open
Abstract
The controlled delocalization of molecular excitons remains an important goal towards the application of organic chromophores in processes ranging from light-initiated chemical transformations to classical and quantum information processing. In this study, we present a methodology to couple optical and magnetic spectroscopic techniques and assess the delocalization of singlet and triplet excitons in model molecular chromophores. By comparing the steady-state and time-resolved optical spectra of Zn-porphyrin monomers and weakly coupled dimers, we show that we can use the identity of substituents bound at specific positions of the macromolecules' rings to control the inter-ring delocalization of singlet excitons stemming from their B states through acetylene bridges. While broadened steady-state absorption spectra suggest the presence of delocalized B state excitons in mesityl-substituted Zn-tetraphenyl porphyrin dimers (Zn2U-D), we confirm this conclusion by measuring an enhanced ultrafast non-radiative relaxation from these inter-ring excitonic states to lower lying electronic states relative to their monomer. In contrast to the delocalized nature of singlet excitons, we use time-resolved EPR and ENDOR spectroscopies to show that the triplet states of the Zn-porphyrin dimers remain localized on one of the two macrocyclic sub-units. We use the analysis of EPR and ENDOR measurements on unmetallated model porphyrin monomers and dimers to support this conclusion. The results of DFT calculations also support the interpretation of localized triplet states. These results demonstrate researchers cannot conclude triplet excitons delocalize in macromolecular based on the presence of spatially extended singlet excitons, which can help in the design of chromophores for application in spin conversion and information processing technologies.
Collapse
Affiliation(s)
- Hasini Medagedara
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Mandefro Y Teferi
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | | | - Wade Burson
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Shahad Kizi
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Bradly Zaslona
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| | - Kristy L Mardis
- Department of Chemistry, Physics, and Engineering Sciences, Chicago State University Chicago IL 60628 USA
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Aaron S Rury
- Department of Chemistry, Wayne State University Detroit MI 48202 USA
| |
Collapse
|
5
|
Bertran A, De Zotti M, Timmel CR, Di Valentin M, Bowen AM. Determining and controlling conformational information from orientationally selective light-induced triplet-triplet electron resonance spectroscopy for a set of bis-porphyrin rulers. Phys Chem Chem Phys 2024; 26:2589-2602. [PMID: 38170870 PMCID: PMC10793979 DOI: 10.1039/d3cp03454b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 01/05/2024]
Abstract
We recently reported a new technique, light-induced triplet-triplet electron resonance (LITTER) spectroscopy, which allows quantification of the dipolar interaction between the photogenerated triplet states of two chromophores. Here we carry out a systematic LITTER study, considering orientation selection by the detection pulses, of a series of bis-porphyrin model peptides with different porphyrin-porphyrin distances and relative orientations. Orientation-dependent analysis of the dipolar datasets yields conformational information of the molecules in frozen solution which is in good agreement with density functional theory predictions. Additionally, a fast partial orientational-averaging treatment produces distance distributions with minimized orientational artefacts. Finally, by direct comparison of LITTER data to double electron-electron resonance (DEER) measured on a system with Cu(II) coordinated into the porphyrins, we demonstrate the advantages of the LITTER technique over the standard DEER methodology. This is due to the remarkable spectroscopic properties of the photogenerated porphyrin triplet state. This work sets the basis for the use of LITTER in structural investigations of unmodified complex biological macromolecules, which could be combined with Förster resonance energy transfer and microscopy inside cells.
Collapse
Affiliation(s)
- Arnau Bertran
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Centro Interdipartimentale di Ricerca "Centro Studi di Economia e Tecnica dell'energia Giorgio Levi Cases", 35131 Padova, Italy.
| | - Christiane R Timmel
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Centro Interdipartimentale di Ricerca "Centro Studi di Economia e Tecnica dell'energia Giorgio Levi Cases", 35131 Padova, Italy.
| | - Alice M Bowen
- The National Research Facility for Electron Paramagnetic Resonance, Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
6
|
Bertran A, Morbiato L, Sawyer J, Dalla Torre C, Heyes DJ, Hay S, Timmel CR, Di Valentin M, De Zotti M, Bowen AM. Direct Comparison between Förster Resonance Energy Transfer and Light-Induced Triplet-Triplet Electron Resonance Spectroscopy. J Am Chem Soc 2023; 145:22859-22865. [PMID: 37839071 PMCID: PMC10603778 DOI: 10.1021/jacs.3c04685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 10/17/2023]
Abstract
To carry out reliable and comprehensive structural investigations, the exploitation of different complementary techniques is required. Here, we report that dual triplet-spin/fluorescent labels enable the first parallel distance measurements by electron spin resonance (ESR) and Förster resonance energy transfer (FRET) on exactly the same molecules with orthogonal chromophores, allowing for direct comparison. An improved light-induced triplet-triplet electron resonance method with 2-color excitation is used, improving the signal-to-noise ratio of the data and yielding a distance distribution that provides greater insight than the single distance resulting from FRET.
Collapse
Affiliation(s)
- Arnau Bertran
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Laura Morbiato
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Jack Sawyer
- The
National Research Facility for Electron Paramagnetic Resonance, Department
of Chemistry, Manchester Institute of Biotechnology and Photon Science
Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Chiara Dalla Torre
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Derren J. Heyes
- The
National Research Facility for Electron Paramagnetic Resonance, Department
of Chemistry, Manchester Institute of Biotechnology and Photon Science
Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam Hay
- The
National Research Facility for Electron Paramagnetic Resonance, Department
of Chemistry, Manchester Institute of Biotechnology and Photon Science
Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Christiane R. Timmel
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Marilena Di Valentin
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Centro
Interdipartimentale di Ricerca “Centro Studi di Economia e
Tecnica dell’energia Giorgio Levi Cases”, 35131 Padova, Italy
| | - Marta De Zotti
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Centro
Interdipartimentale di Ricerca “Centro Studi di Economia e
Tecnica dell’energia Giorgio Levi Cases”, 35131 Padova, Italy
| | - Alice M. Bowen
- The
National Research Facility for Electron Paramagnetic Resonance, Department
of Chemistry, Manchester Institute of Biotechnology and Photon Science
Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
7
|
Carella A, Ciuti S, Wiedemann HTA, Kay CWM, van der Est A, Carbonera D, Barbon A, Poddutoori PK, Di Valentin M. The electronic structure and dynamics of the excited triplet state of octaethylaluminum(III)-porphyrin investigated with advanced EPR methods. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107515. [PMID: 37364432 DOI: 10.1016/j.jmr.2023.107515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
The photoexcited triplet state of octaethylaluminum(III)-porphyrin (AlOEP) was investigated by time-resolved Electron Paramagnetic Resonance, Electron Nuclear Double Resonance and Electron Spin Echo Envelope Modulation in an organic glass at 10 and 80 K. This main group element porphyrin is unusual because the metal has a small ionic radius and is six-coordinate with axial covalent and coordination bonds. It is not known whether triplet state dynamics influence its magnetic resonance properties as has been observed for some transition metal porphyrins. Together with density functional theory modelling, the magnetic resonance data of AlOEP allow the temperature dependence of the zero-field splitting (ZFS) parameters, D and E, and the proton AZZ hyperfine coupling (hfc) tensor components of the methine protons, in the zero-field splitting frame to be determined. The results provide evidence that the ZFS, hfc and spin-lattice relaxation are indeed influenced by the presence of a dynamic process that is discussed in terms of Jahn-Teller dynamic effects. Thus, these effects should be taken into account when interpreting EPR data from larger complexes containing AlOEP.
Collapse
Affiliation(s)
- Angelo Carella
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Susanna Ciuti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Haakon T A Wiedemann
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany
| | - Christopher W M Kay
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany; London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Arthur van der Est
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Prashanth K Poddutoori
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, MN 55812, USA
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
8
|
Yabuki R, Nishimura K, Hamachi T, Matsumoto N, Yanai N. Generation and Transfer of Triplet Electron Spin Polarization at the Solid-Liquid Interface. J Phys Chem Lett 2023; 14:4754-4759. [PMID: 37184433 DOI: 10.1021/acs.jpclett.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The photoexcited triplet state of dyes can generate highly polarized electron spins for sensing and dynamic nuclear polarization. However, while triplets exhibit long spin-lattice relaxation times (T1) on the microsecond scale in solids, the polarization quickly relaxes on the nanosecond scale in solution due to the rotational motion of chromophores. Here, we report that the immobilization of dye molecules on a solid surface allows molecular contact with a liquid while maintaining high polarization and long T1 as in a solid. By adsorbing anionic porphyrins on cationic mesoporous silica gel, porphyrin triplets exhibit high polarization and long T1 at the solid-liquid interface of silica and toluene. Furthermore, porphyrin triplets on the solid surface can exchange spin polarization with TEMPO radicals in solution. This simple and versatile method using the solid-liquid interface will open the door for utilizing the photoinduced triplet spin polarization in solution, which has been mainly limited to the solid-state.
Collapse
Affiliation(s)
- Reiya Yabuki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koki Nishimura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomoyuki Hamachi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Naoto Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- FOREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Ciuti S, Carella A, Lucotti A, Tommasini M, Barbon A, Di Valentin M. Insights into the phototautomerism of free-base 5, 10, 15, 20-tetrakis(4-sulfonatophenyl) porphyrin. Photochem Photobiol Sci 2023:10.1007/s43630-023-00413-5. [PMID: 37038020 DOI: 10.1007/s43630-023-00413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
Phototautomerism in the excited states of free-base 5, 10, 15, 20-tetrakis(4-sulfonatophenyl) porphyrin (H2TPPS4-) has been investigated combining, for the first time, advanced Electron Paramagnetic Resonance (EPR) with fluorescence and Raman spectroscopy. Triplet EPR spectroscopy, performed in protic and deuterated solvents and in the presence of photoselection, confirms the occurrence of phototautomerization and additionally suggests the formation of the cis tautomer as a minor component. The zero-field splitting parameters and triplet sublevel populations indicate that the process is slow in the triplet state. The results obtained by EPR combined with photoselection and fluorescence anisotropy have been interpreted within a model which accounts for a fast trans-trans tautomerization promoted by a spin-vibronic coupling mechanism for intersystem crossing, with an even distribution of the two trans tautomers at liquid nitrogen temperatures for H2TPPS4-.
Collapse
Affiliation(s)
- Susanna Ciuti
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Angelo Carella
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Andrea Lucotti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, P.zza L. da Vinci 32, 20133, Milano, Italy
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, P.zza L. da Vinci 32, 20133, Milano, Italy
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy.
| | - Marilena Di Valentin
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
10
|
Ciuti S, Toninato J, Barbon A, Zarrabi N, Poddutoori PK, van der Est A, Di Valentin M. Solvent dependent triplet state delocalization in a co-facial porphyrin heterodimer. Phys Chem Chem Phys 2022; 24:30051-30061. [PMID: 36472461 DOI: 10.1039/d2cp04291f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The excited triplet state of a cofacial aluminum(III) porphyrin-phosphorus(V) porphyrin heterodimer is investigated using transient EPR spectroscopy and quantum chemical calculations. In the dimer, the two porphyrins are bound covalently to each other via a μ-oxo bond between the Al and P centres, which results in strong electronic interaction between the porphyrin rings. The spin polarized transient EPR spectrum of the dimer is narrower than the spectra of the constituent monomers and the magnitude of the zero-field splitting parameter D is solvent dependent, decreasing as the polarity of the solvent increases. The quantum chemical calculations show that the spin density of the triplet state is delocalized over both porphyrins, while magnetophotoselection measurements reveal that, in contrast to the value of D, the relative orientation of the ZFS axes and the excitation transition dipole moments are not solvent dependent. Together the results indicate that triplet state wavefunction is delocalized over both porphyrins and has a modest degree of charge-transfer character that increases with increasing solvent polarity. The sign of the spin polarization pattern of the dimer triplet state is opposite to that of the monomers. The positive sign of D predicted for the monomers and dimer by the quantum chemical calculations implies that the different signs of the spin polarization patterns is a result of a difference in the spin selectivity of the intersystem crossing.
Collapse
Affiliation(s)
- Susanna Ciuti
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Jacopo Toninato
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Niloofar Zarrabi
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, Minnesota 55812, USA.
| | - Prashanth K Poddutoori
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1038 University Drive, Duluth, Minnesota 55812, USA.
| | - Art van der Est
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Marilena Di Valentin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
11
|
Zhang X, Ivanov M, Wang Z, Bousquet MHE, Liu X, Wan Y, Zhao J, Barbon A, Escudero D, Jacquemin D, Fedin M. Confinement of the Triplet States in π‐Conjugated BODIPY Dimers Linked with Ethynylene or Butadiynylene Bridges: A Different View on the Effect of Symmetry. Angew Chem Int Ed Engl 2022; 61:e202210419. [PMID: 36216789 PMCID: PMC10092165 DOI: 10.1002/anie.202210419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/07/2022]
Abstract
Understanding the impact of the excited state wavefunction confinement is crucial for the engineering of the photophysical properties and applications of organic chromophores. In the present contribution, the localization of the triplet state wavefunctions of some symmetric ethyne/butadiyne bridged BODIPY dimers and asymmetric BODIPY derivatives presenting extended π-conjugation frameworks is studied with time-resolved electron paramagnetic resonance spectroscopy and time-dependent density functional theory computations. Based on the Zero Field Splitting D parameters, we conclude that the triplet state wavefunctions are highly localized on one BODIPY unit in the symmetric dimers, which is consistent with the ab initio modelling that finds delocalized triplet state destabilized by 12-14 kcal mol-1 as compared to its localized counterpart. The result provides a new insight into the study of triplet excited state confinement and the design of molecular wires or photosensitizers for photovoltaics and photocatalysis.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Mikhail Ivanov
- International Tomography Center SB RAS Institutskaya Str., 3A 630090 Novosibirsk Russia
- Novosibirsk State University Pirogova str. 2 630090 Novosibirsk Russia
| | - Zhijia Wang
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | | | - Xi Liu
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Yan Wan
- College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials School of Chemical Engineering Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche Università degli Studi di Padova 35131 Padova Italy
| | - Daniel Escudero
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Denis Jacquemin
- Nantes Université CNRS CEISAM UMR 6230 44300 Nantes France
- Institut Universitaire de France 75005 Paris France
| | - Matvey Fedin
- International Tomography Center SB RAS Institutskaya Str., 3A 630090 Novosibirsk Russia
- Novosibirsk State University Pirogova str. 2 630090 Novosibirsk Russia
| |
Collapse
|
12
|
Gradova M, Gradov O, Bychkova A, Motyakin M, Ionova I, Lobanov A. Interaction between meso-tetra-(4-hydroxyphenyl)porphyrin and SDS in aqueous solutions: Premicellar porphyrin-surfactant J-aggregate formation. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Ciuti S, Agostini A, Barbon A, Bortolus M, Paulsen H, Di Valentin M, Carbonera D. Magnetophotoselection in the Investigation of Excitonically Coupled Chromophores: The Case of the Water-Soluble Chlorophyll Protein. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123654. [PMID: 35744779 PMCID: PMC9227413 DOI: 10.3390/molecules27123654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/01/2022]
Abstract
A magnetophotoselection (MPS) investigation of the photoexcited triplet state of chlorophyll a both in a frozen organic solvent and in a protein environment, provided by the water-soluble chlorophyll protein (WSCP) of Lepidium virginicum, is reported. The MPS experiment combines the photoselection achieved by exciting with linearly polarized light with the magnetic selection of electron paramagnetic resonance (EPR) spectroscopy, allowing the determination of the relative orientation of the optical transition dipole moment and the zero-field splitting tensor axes in both environments. We demonstrate the robustness of the proposed methodology for a quantitative description of the excitonic interactions among pigments. The orientation of the optical transition dipole moments determined by the EPR analysis in WSCP, identified as an appropriate model system, are in excellent agreement with those calculated in the point-dipole approximation. In addition, MPS provides information on the electronic properties of the triplet state, localized on a single chlorophyll a pigment of the protein cluster, in terms of orientation of the zero-field splitting tensor axes in the molecular frame.
Collapse
Affiliation(s)
- Susanna Ciuti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.C.); (A.A.); (A.B.); (M.B.)
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.C.); (A.A.); (A.B.); (M.B.)
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.C.); (A.A.); (A.B.); (M.B.)
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.C.); (A.A.); (A.B.); (M.B.)
| | - Harald Paulsen
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Johann-Joachim Becher-Weg 7, 55128 Mainz, Germany;
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.C.); (A.A.); (A.B.); (M.B.)
- Correspondence: (M.D.V.); (D.C.); Tel.: +39-0498275139 (M.D.V.); +39-0498275144 (D.C.)
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.C.); (A.A.); (A.B.); (M.B.)
- Correspondence: (M.D.V.); (D.C.); Tel.: +39-0498275139 (M.D.V.); +39-0498275144 (D.C.)
| |
Collapse
|
14
|
Niklas J, Agostini A, Carbonera D, Di Valentin M, Lubitz W. Primary donor triplet states of Photosystem I and II studied by Q-band pulse ENDOR spectroscopy. PHOTOSYNTHESIS RESEARCH 2022; 152:213-234. [PMID: 35290567 PMCID: PMC9424170 DOI: 10.1007/s11120-022-00905-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 05/05/2023]
Abstract
The photoexcited triplet state of the "primary donors" in the two photosystems of oxygenic photosynthesis has been investigated by means of electron-nuclear double resonance (ENDOR) at Q-band (34 GHz). The data obtained represent the first set of 1H hyperfine coupling tensors of the 3P700 triplet state in PSI and expand the existing data set for 3P680. We achieved an extensive assignment of the observed electron-nuclear hyperfine coupling constants (hfcs) corresponding to the methine α-protons and the methyl group β-protons of the chlorophyll (Chl) macrocycle. The data clearly confirm that in both photosystems the primary donor triplet is located on one specific monomeric Chl at cryogenic temperature. In comparison to previous transient ENDOR and pulse ENDOR experiments at standard X-band (9-10 GHz), the pulse Q-band ENDOR spectra demonstrate both improved signal-to-noise ratio and increased resolution. The observed ENDOR spectra for 3P700 and 3P680 differ in terms of the intensity loss of lines from specific methyl group protons, which is explained by hindered methyl group rotation produced by binding site effects. Contact analysis of the methyl groups in the PSI crystal structure in combination with the ENDOR analysis of 3P700 suggests that the triplet is located on the Chl a' (PA) in PSI. The results also provide additional evidence for the localization of 3P680 on the accessory ChlD1 in PSII.
Collapse
Affiliation(s)
- Jens Niklas
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL, 60439, USA.
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| |
Collapse
|
15
|
Bertran A, Barbon A, Bowen AM, Di Valentin M. Light-induced pulsed dipolar EPR spectroscopy for distance and orientation analysis. Methods Enzymol 2022; 666:171-231. [PMID: 35465920 DOI: 10.1016/bs.mie.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Measuring distances in biology at the molecular level is of great importance for understanding the structure and function of proteins, nucleic acids and other biological molecules and their complexes. Pulsed Dipolar Spectroscopy (PDS) offers advantages with respect to other methods as it is uniquely sensitive and specific to electronic spin centers and allows measurements in near-native conditions, comprising the in-cell environment. PDS methods measure the electron spin-spin dipolar interaction, therefore they require the presence of at least two paramagnetic centers, which are often stable radicals. Recent developments have introduced transient triplet states, photo-activated by a laser pulse, as spin labels and probes, thereby establishing a new family of techniques-Light-induced PDS (LiPDS). In this chapter, an overview of these methods is provided, looking at the chromophores that can be used for LiPDS and some of the technical aspects of the experiments. A guide to the choice of technique that can yield the best results, depending on the type of system studied and the information required, is provided. Examples of previous LiPDS studies of model systems and proteins are given. Characterization data for the chromophores used in these studies is tabulated to help selection of appropriate triplet state probes in future studies.
Collapse
Affiliation(s)
- Arnau Bertran
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Alice M Bowen
- Centre for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; EPSRC National Research Facility for Electron Paramagnetic Resonance Spectroscopy, Department of Chemistry and Photon Science Institute, The University of Manchester, Manchester, United Kingdom.
| | | |
Collapse
|
16
|
Büchner R, Vaz da Cruz V, Grover N, Charisiadis A, Fondell M, Haverkamp R, Senge MO, Föhlisch A. Fundamental electronic changes upon intersystem crossing in large aromatic photosensitizers: free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin. Phys Chem Chem Phys 2022; 24:7505-7511. [PMID: 35288726 PMCID: PMC8942076 DOI: 10.1039/d1cp05420a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Free base 5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrin stands for the class of powerful porphyrin photosensitizers for singlet oxygen generation and light-harvesting. The atomic level selectivity of dynamic UV pump – N K-edge probe X-ray absorption spectroscopy in combination with time-dependent density functional theory (TD-DFT) gives direct access to the crucial excited molecular states within the unusual relaxation pathway. The efficient intersystem crossing, that is El-Sayed forbidden and not facilitated by a heavy atom is confirmed to be the result of the long singlet excited state lifetime (Qx 4.9 ns) and thermal effects. Overall, the interplay of stabilization by conservation of angular momenta and vibronic relaxation drive the de-excitation in these chromophores. The crucial transient states of free-base porphyrins are characterized by time-resolved X-ray absorption spectroscopy unraveling their unusual relaxation pathway.![]()
Collapse
Affiliation(s)
- Robby Büchner
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany. .,Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| | - Vinícius Vaz da Cruz
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| | - Nitika Grover
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Asterios Charisiadis
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mattis Fondell
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| | - Robert Haverkamp
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany. .,Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| | - Mathias O Senge
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, 85748 Munchen Garching, Germany.
| | - Alexander Föhlisch
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany. .,Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| |
Collapse
|
17
|
Redman A, Moise G, Richert S, Viere EJ, Myers WK, Therien MJ, Timmel CR. EPR of Photoexcited Triplet-State Acceptor Porphyrins. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:11782-11790. [PMID: 34276860 PMCID: PMC8279703 DOI: 10.1021/acs.jpcc.1c03278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/02/2021] [Indexed: 05/20/2023]
Abstract
The photoexcited triplet states of porphyrin architectures are of significant interest in a wide range of fields including molecular wires, nonlinear optics, and molecular spintronics. Electron paramagnetic resonance (EPR) is a key spectroscopic tool in the characterization of these transient paramagnetic states singularly well suited to quantify spin delocalization. Previous work proposed a means of extracting the absolute signs of the zero-field splitting (ZFS) parameters, D and E, and triplet sublevel populations by transient continuous wave, hyperfine measurements, and magnetophotoselection. Here, we present challenges of this methodology for a series of meso-perfluoroalkyl-substituted zinc porphyrin monomers with orthorhombic symmetries, where interpretation of experimental data must proceed with caution and the validity of the assumptions used in the analysis must be scrutinized. The EPR data are discussed alongside quantum chemical calculations, employing both DFT and CASSCF methodologies. Despite some success of the latter in quantifying the magnitude of the ZFS interaction, the results clearly provide motivation to develop improved methods for ZFS calculations of highly delocalized organic triplet states.
Collapse
Affiliation(s)
- Ashley
J. Redman
- Centre
for Advanced Electron Spin Resonance (CÆSR), University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Gabriel Moise
- Centre
for Advanced Electron Spin Resonance (CÆSR), University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Sabine Richert
- Institute
of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Erin J. Viere
- Department
of Chemistry, Duke University, French Family
Science Center, 124 Science Drive, Durham, North Carolina 27708, United States
| | - William K. Myers
- Centre
for Advanced Electron Spin Resonance (CÆSR), University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Michael J. Therien
- Department
of Chemistry, Duke University, French Family
Science Center, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Christiane R. Timmel
- Centre
for Advanced Electron Spin Resonance (CÆSR), University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
- . Phone: +44 (0)1865 272682
| |
Collapse
|
18
|
Yan Y, Sukhanov AA, Bousquet MHE, Guan Q, Zhao J, Voronkova VK, Escudero D, Barbon A, Xing Y, Gurzadyan GG, Jacquemin D. Does Twisted π-Conjugation Framework Always Induce Efficient Intersystem Crossing? A Case Study with Benzo[ b]- and [ a]Phenanthrene-Fused BODIPY Derivatives and Identification of a Dark State. J Phys Chem B 2021; 125:6280-6295. [PMID: 34077214 DOI: 10.1021/acs.jpcb.1c03189] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The photophysical properties, especially the intersystem crossing (ISC) of two heavy-atom-free BODIPY derivatives with twisted π-conjugated frameworks (benzo[b]-fused BODIPY, BDP-B; and [a]phenanthrene-fused BODIPY, BDP-P), are studied with steady-state and time-resolved optical and electron paramagnetic resonance (TREPR) spectroscopic methods as well as with ADC(2) theoretical investigations. Interestingly, BDP-B has a planar π-conjugation framework, but it displays weaker UV-vis absorption (ε = 3.8 × 104 M-1 cm-1 at 569 nm) and fluorescence (ΦF < 0.1%), a short-lived singlet-excited state (fluorescence lifetime, τF = 0.2 ns), and a long-lived triplet state (τT = 132.3 μs). In comparison, the more twisted BDP-P shows stronger UV-vis absorption (ε = 9.8 × 104 M-1 cm-1 at 640 nm) and fluorescence (ΦF = 70%), longer singlet-excited-state lifetime (τF = 6.4 ns), and shorter triplet-state lifetime (τT = 18.9 μs). In contrast to helicenes (ΦT = ca. 90%), the ISC of BDP-P and BDP-B is nonefficient (ΦT < 23%). The electron spin selectivity of the ISC of the derivatives is different, manifested by the phase pattern of the TREPR spectra as AAEAEE and EEEAAA for BDP-B and BDP-P, respectively. The spatially confined T1 state wave function of the twisted molecule keeps the T1 state energy high (1.44-1.61 eV). A dark S1 state was identified for BDP-B. This work demonstrated that the twisted π-conjugated framework does not necessarily induce efficient ISC and we found a dark singlet state for BODIPY, which is rare.
Collapse
Affiliation(s)
- Yuxin Yan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling-Gong Road, Dalian 116024, P. R. China
| | - Andrei A Sukhanov
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, Kazan 420029, Russia
| | | | - Qinglin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Ling-Gong Road, Dalian 116024, P. R. China
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, Kazan 420029, Russia
| | - Daniel Escudero
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Yongheng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Gagik G Gurzadyan
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, Dalian 116024, P. R. China
| | - Denis Jacquemin
- Laboratoire CEISAM, CNRS, Université de Nantes, Nantes 44322, France
| |
Collapse
|
19
|
Bowen AM, Bertran A, Henbest KB, Gobbo M, Timmel CR, Di Valentin M. Orientation-Selective and Frequency-Correlated Light-Induced Pulsed Dipolar Spectroscopy. J Phys Chem Lett 2021; 12:3819-3826. [PMID: 33856805 PMCID: PMC8154851 DOI: 10.1021/acs.jpclett.1c00595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
We explore the potential of orientation-resolved pulsed dipolar spectroscopy (PDS) in light-induced versions of the experiment. The use of triplets as spin-active moieties for PDS offers an attractive tool for studying biochemical systems containing optically active cofactors. Cofactors are often rigidly bound within the protein structure, providing an accurate positional marker. The rigidity leads to orientation selection effects in PDS, which can be analyzed to give both distance and mutual orientation information. Herein we present a comprehensive analysis of the orientation selection of a full set of light-induced PDS experiments. We exploit the complementary information provided by the different light-induced techniques to yield atomic-level structural information. For the first time, we measure a 2D frequency-correlated laser-induced magnetic dipolar spectrum, and we are able to monitor the complete orientation dependence of the system in a single experiment. Alternatively, the summed spectrum enables an orientation-independent analysis to determine the distance distribution.
Collapse
Affiliation(s)
- Alice M. Bowen
- Department
of Chemistry, Photon Science Institute and The National EPR Research
Facility, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Arnau Bertran
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Kevin B. Henbest
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Marina Gobbo
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Christiane R. Timmel
- Centre
for Advanced Electron Spin Resonance and Inorganic Chemistry Laboratory,
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Marilena Di Valentin
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
20
|
Hamachi T, Nishimura K, Kouno H, Kawashima Y, Tateishi K, Uesaka T, Kimizuka N, Yanai N. Porphyrins as Versatile, Aggregation-Tolerant, and Biocompatible Polarizing Agents for Triplet Dynamic Nuclear Polarization of Biomolecules. J Phys Chem Lett 2021; 12:2645-2650. [PMID: 33689350 DOI: 10.1021/acs.jpclett.1c00294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Triplet dynamic nuclear polarization (triplet-DNP) achieves nuclear spin polarization at moderate temperatures by using spin polarization of photoexcited triplet electrons. The applications of triplet-DNP for biomolecules have been hampered because acenes, the only polarizing agents used so far, tend to aggregate and lose their polarization in biomolecular matrices. Here, we report for the first time use of porphyrins as polarizing agents of triplet-DNP and propose a new concept of aggregation-tolerant polarizing agents. Sodium salts of tetrakis(4-carboxyphenyl)porphyrin (TCPPNa) can be dispersed in amorphous as well as crystalline biomolecular matrices, and importantly, it can generate polarized triplet electrons even in a slightly aggregated state. Triplet-DNP of crystalline erythritol containing slightly aggregated TCPPNa can achieve more than 120-fold signal enhancement. Because TCPPNa is also the first biocompatible triplet-DNP polarizing agent, this work provides a crucial step forward for the biological and medical applications of triplet-DNP.
Collapse
Affiliation(s)
- Tomoyuki Hamachi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koki Nishimura
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hironori Kouno
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Kawashima
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenichiro Tateishi
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomohiro Uesaka
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
21
|
Zarrabi N, Bayard BJ, Seetharaman S, Holzer N, Karr P, Ciuti S, Barbon A, Di Valentin M, van der Est A, D'Souza F, Poddutoori PK. A charge transfer state induced by strong exciton coupling in a cofacial μ-oxo-bridged porphyrin heterodimer. Phys Chem Chem Phys 2021; 23:960-970. [PMID: 33367389 DOI: 10.1039/d0cp05783e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photosensitizers with high energy, long lasting charge-transfer states are important components in systems designed for solar energy conversion by multistep electron transfer. Here, we show that in a push-pull type, μ-oxo-bridged porphyrin heterodimer composed of octaethylporphyrinatoaluminum(iii) and octaethylporphyrinatophosphorus(v), the strong excitonic coupling between the porphyrins and the different electron withdrawing abilities of Al(iii) and P(v) promote the formation of a high energy CT state. Using, an array of optical and magnetic resonance spectroscopic methods along with theoretical calculations, we demonstrate photodynamics of the heterodimer that involves the initial formation of a singlet CT which relaxes to a triplet CT state with a lifetime of ∼130 ps. The high-energy triplet CT state (3CT = 1.68 eV) lasts for nearly 105 μs prior to relaxing to the ground state.
Collapse
Affiliation(s)
- Niloofar Zarrabi
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, USA.
| | - Brandon J Bayard
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, USA.
| | - Sairaman Seetharaman
- Department of Chemistry, University of North Texas, 1155 Union Circle, # 305070, Denton, Texas 76203-5017, USA.
| | - Noah Holzer
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, USA.
| | - Paul Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska 68787, USA
| | - Susanna Ciuti
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marilena Di Valentin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Art van der Est
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, # 305070, Denton, Texas 76203-5017, USA.
| | - Prashanth K Poddutoori
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, USA.
| |
Collapse
|
22
|
Grzegorzek N, Mao H, Michel P, Junge MJ, Lorenzo ER, Young RM, Krzyaniak MD, Wasielewski MR, Chernick ET. Metalated Porphyrin Stable Free Radicals: Exploration of Electron Spin Communication and Dynamics. J Phys Chem A 2020; 124:6168-6176. [DOI: 10.1021/acs.jpca.0c03176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Norbert Grzegorzek
- Institute für Organische Chemie, University of Tübingen, Auf Der Morgenstelle 18, A-Bau, Tübingen 72076, Germany
| | - Haochuan Mao
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Patrick Michel
- Institute für Organische Chemie, University of Tübingen, Auf Der Morgenstelle 18, A-Bau, Tübingen 72076, Germany
| | - Marc J. Junge
- Institute für Organische Chemie, University of Tübingen, Auf Der Morgenstelle 18, A-Bau, Tübingen 72076, Germany
| | - Emmaline R. Lorenzo
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M. Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D. Krzyaniak
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Erin T. Chernick
- Institute für Organische Chemie, University of Tübingen, Auf Der Morgenstelle 18, A-Bau, Tübingen 72076, Germany
| |
Collapse
|
23
|
Affiliation(s)
- P J Hore
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| |
Collapse
|