1
|
Zhu G, Gao L, Sun Y, Wei W, Yan LT. Non-equilibrium structural and dynamic behaviors of active polymers in complex and crowded environments. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:054601. [PMID: 38608453 DOI: 10.1088/1361-6633/ad3e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Active matter systems, which convert internal chemical energy or energy from the environment into directed motion, are ubiquitous in nature and exhibit a range of emerging non-equilibrium behaviors. However, most of the current works on active matter have been devoted to particles, and the study of active polymers has only recently come into the spotlight due to their prevalence within living organisms. The intricate interplay between activity and conformational degrees of freedom gives rise to novel structural and dynamical behaviors of active polymers. Research in active polymers remarkably broadens diverse concepts of polymer physics, such as molecular architecture, dynamics, scaling and so on, which is of significant importance for the development of new polymer materials with unique performance. Furthermore, active polymers are often found in strongly interacting and crowded systems and in complex environments, so that the understanding of this behavior is essential for future developments of novel polymer-based biomaterials. This review thereby focuses on the study of active polymers in complex and crowded environments, and aims to provide insights into the fundamental physics underlying the adaptive and collective behaviors far from equilibrium, as well as the open challenges that the field is currently facing.
Collapse
Affiliation(s)
- Guolong Zhu
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yihang Sun
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Wenjie Wei
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
2
|
Sannyamath S, Vetter R, Bonart H, Hartmann M, Ganguly R, Hardt S. Disorder-to-order transition of long fibers contained in evaporating sessile drops. SOFT MATTER 2024; 20:3107-3117. [PMID: 38415293 DOI: 10.1039/d3sm01735d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A liquid drop containing a long fiber is a complex system whose configuration is determined by an interplay of elastic stresses in the fiber and capillary forces due to the liquid. We study the morphological evolution of fibers that are much longer than the drop diameter in evaporating sessile drops. After insertion, the fibers are either found in an ordered or disordered state, with increasing disorder for increasing fiber length. Upon evaporation, the order increases, in such a way that the final configuration deposited on the solid surface is either a circle, an ellipse, or 8-shaped. The morphology of the deposit depends on the fiber length and the elastocapillary length, both non-dimensionalized with the characteristic drop size, which we classify in a morphology regime map. The disorder-to-order transition allows depositing ordered fiber structures on solid surfaces even in cases of a strongly disordered state after fiber insertion. Combined with technologies such as inkjet printing, this process could open new avenues to decorate surfaces with filamental structures whose morphology can be controlled by varying the fiber length.
Collapse
Affiliation(s)
- S Sannyamath
- Institute for Nano- and Microfluidics, Department of Mechanical Engineering, TU Darmstadt, Peter-Grünberg-Str. 10, 64287 Darmstadt, Germany.
- Department of Civil Engineering, Jadavpur University, India
| | - R Vetter
- Computational Physics for Engineering Materials, ETH Zürich, Switzerland.
| | - H Bonart
- Institute for Nano- and Microfluidics, Department of Mechanical Engineering, TU Darmstadt, Peter-Grünberg-Str. 10, 64287 Darmstadt, Germany.
| | - M Hartmann
- Institute for Nano- and Microfluidics, Department of Mechanical Engineering, TU Darmstadt, Peter-Grünberg-Str. 10, 64287 Darmstadt, Germany.
| | - R Ganguly
- Department of Power Engineering, Jadavpur University, India.
| | - S Hardt
- Institute for Nano- and Microfluidics, Department of Mechanical Engineering, TU Darmstadt, Peter-Grünberg-Str. 10, 64287 Darmstadt, Germany.
| |
Collapse
|
3
|
Nikoubashman A. Ordering, phase behavior, and correlations of semiflexible polymers in confinement. J Chem Phys 2021; 154:090901. [DOI: 10.1063/5.0038052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
4
|
Sprenger AR, Shaik VA, Ardekani AM, Lisicki M, Mathijssen AJTM, Guzmán-Lastra F, Löwen H, Menzel AM, Daddi-Moussa-Ider A. Towards an analytical description of active microswimmers in clean and in surfactant-covered drops. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:58. [PMID: 32920676 DOI: 10.1140/epje/i2020-11980-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 05/24/2023]
Abstract
Geometric confinements are frequently encountered in the biological world and strongly affect the stability, topology, and transport properties of active suspensions in viscous flow. Based on a far-field analytical model, the low-Reynolds-number locomotion of a self-propelled microswimmer moving inside a clean viscous drop or a drop covered with a homogeneously distributed surfactant, is theoretically examined. The interfacial viscous stresses induced by the surfactant are described by the well-established Boussinesq-Scriven constitutive rheological model. Moreover, the active agent is represented by a force dipole and the resulting fluid-mediated hydrodynamic couplings between the swimmer and the confining drop are investigated. We find that the presence of the surfactant significantly alters the dynamics of the encapsulated swimmer by enhancing its reorientation. Exact solutions for the velocity images for the Stokeslet and dipolar flow singularities inside the drop are introduced and expressed in terms of infinite series of harmonic components. Our results offer useful insights into guiding principles for the control of confined active matter systems and support the objective of utilizing synthetic microswimmers to drive drops for targeted drug delivery applications.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| | - Vaseem A Shaik
- School of Mechanical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Maciej Lisicki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Arnold J T M Mathijssen
- Department of Bioengineering, Stanford University, 443 Via Ortega, 94305, Stanford, CA, USA
- Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Francisca Guzmán-Lastra
- Centro de Investigación DAiTA Lab, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Av. Manuel Montt 367, Providencia, Santiago de Chile, Chile
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|