1
|
Durden AS, Schlegel HB. Reducing the Cost of TD-CI Simulations of Strong Field Ionization. J Phys Chem A 2024; 128:7440-7450. [PMID: 39177145 DOI: 10.1021/acs.jpca.4c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Strong field ionization of molecules by intense laser pulses can be simulated by time-dependent configuration interaction (TD-CI) with a complex absorbing potential (CAP). Standard molecular basis sets need to be augmented with several sets of diffuse functions for effective interaction with the CAP. This dramatically increases the number of configurations and the cost of the TD-CI simulations as the size of the molecules increases. The cost can be reduced by making use of spin symmetry and by employing an orbital energy cutoff to limit the number of virtual orbitals used to construct the excited configurations. Greater reductions in the number of virtual orbitals can be obtained by examining their interaction with the absorbing potential during simulations and their contributions to the strong field ionization rate. This can be determined from the matrix elements of the absorbing potential and the TD-CI coefficients from test simulations. Compared to a simple 3 hartree cutoff in the orbital energies, these approaches reduce the number of virtual orbitals by 20-35% for neutral molecules and 5-10% for cations. As a result, the cost of simulations is reduced by 35-60% for neutral molecules. The number of virtual orbitals needed can also be estimated by second-order perturbation theory without the need for test simulations. The number of virtual orbitals can be reduced further by adapting orbitals to the laser field using natural orbitals derived from test simulations. This is particularly effective for cations, yielding reductions of more than 20%.
Collapse
Affiliation(s)
- Andrew S Durden
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Rodríguez-Cuenca E, Picón A, Oberli S, Kuleff AI, Vendrell O. Core-Hole Coherent Spectroscopy in Molecules. PHYSICAL REVIEW LETTERS 2024; 132:263202. [PMID: 38996324 DOI: 10.1103/physrevlett.132.263202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/08/2024] [Accepted: 05/20/2024] [Indexed: 07/14/2024]
Abstract
We study the ultrafast dynamics initiated by a coherent superposition of core-excited states of nitrous oxide molecule. Using high-level ab initio methods, we show that the decoherence caused by the electronic decay and the nuclear dynamics is substantially slower than the induced ultrafast quantum beatings, allowing the system to undergo several oscillations before it dephases. We propose a proof-of-concept experiment using the harmonic up-conversion scheme available at x-ray free-electron laser facilities to trace the evolution of the created core-excited-state coherence through a time-resolved x-ray photoelectron spectroscopy.
Collapse
|
3
|
Belles E, Rabilloud F, Kuleff AI, Despré V. Size Effect in Correlation-Driven Charge Migration in Correlation Bands of Alkyne Chains. J Phys Chem A 2024; 128:163-169. [PMID: 38150589 DOI: 10.1021/acs.jpca.3c06776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Correlation-driven charge migration initiated by inner-valence ionization leading to the population of the correlation bands of alkyne chains containing between 4 and 12 carbon atoms is explored through ab initio simulations. Scaling laws are observed, both for the time scale of the charge migration and for the slope of the density of states of the correlation bands. These can be used for predicting the relaxation time scale in much larger systems from the same molecular family and for finding promising candidates for the development of an attochemistry scheme taking advantages of the specificity of the dynamics in the correlation bands of molecules.
Collapse
Affiliation(s)
- Enguerran Belles
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Villeurbanne F-69622, France
| | - Franck Rabilloud
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Villeurbanne F-69622, France
| | - Alexander I Kuleff
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| | - Victor Despré
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, Villeurbanne F-69622, France
| |
Collapse
|
4
|
Hanasaki K, Takatsuka K. Spin current in the early stage of radical reactions and its mechanisms. J Chem Phys 2023; 159:144111. [PMID: 37830453 DOI: 10.1063/5.0169281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
We study the electronic spin flux (atomic-scale flow of the spin density in molecules) by a perturbation analysis and ab initio nonadiabatic calculations. We derive a general perturbative expression of the charge and spin fluxes and identify the driving perturbation of the fluxes to be the time derivative of the electron-nucleus interaction term in the Hamiltonian. We then expand the expression in molecular orbitals so as to identify relevant components of the fluxes. Our perturbation theory describes the electronic fluxes in the early stage of reactions in an intuitively clear manner. The perturbation theory is then applied to an analysis of the spin flux obtained in ab initio calculations of the radical reaction of O2 and CH3· starting from three distinct spin configurations; (a) CH3· and triplet O2 with total spin of the system set Stot=1/2 (b) CH3· and singlet O2, Stot=1/2, and (c) CH3· and triplet O2, Stot=3/2. Further analysis of the time-dependent behaviors of the spin flux in these numerical simulations reveals (i) the spin flux induces rearrangement of the local spin structure, such as reduction of the spin polarization arising from the triplet O2 and (ii) the spin flux flows from O2 to CH3· in the reaction starting from spin configuration (a) and from CH3· to O2 in that starting from configuration (b), whereas no major intermolecular spin flux was observed in that starting from configuration (c). Our study thus establishes the mechanism of the spin flux that rearranges the local spin structures associated with chemical bonds.
Collapse
Affiliation(s)
- Kota Hanasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
5
|
Schlegel HB. Charge Migration in HCCI Cations Probed by Strong Field Ionization: Time-Dependent Configuration Interaction and Vibrational Wavepacket Simulations. J Phys Chem A 2023; 127:6040-6050. [PMID: 37459461 DOI: 10.1021/acs.jpca.3c02667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Strong field ionization of neutral iodoacetylene (HCCI) can produce a coherent superposition of the X and A cations and results in charge migration between the CC π orbital and the iodine π-type lone pair. This charge migration causes oscillations in the rate of strong field ionization of the cation to the dication that can be monitored using intense few-cycle probe pulses. The dynamics and strong field ionization of the coherent superposition the X and A states of HCCI+ have been modeled by time-dependent configuration interaction (TDCI) simulations. When the nuclei are allowed to move, the electronic wavefunctions need to be multiplied by vibrational wavefunctions. Nuclear motion has been modeled by vibrational packets moving on quadratic approximations to the potential energy surfaces for the X and A states of the cation. The overlap of the vibrational wavepackets decays in about 10-15 fs. Consequently, the oscillations in the strong field ionization decay on the same time scale. A revival of the vibrational overlap and in the oscillations of the strong field ionization is seen at 60-110 fs. TDCI simulations show that the decay and revival of the charge migration can be monitored by strong field ionization with intense 2- and 4-cycle linearly polarized 800 nm pulses. The revival is also seen with 7-cycle pulses.
Collapse
Affiliation(s)
- H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
6
|
Tremblay JC, Blanc A, Krause P, Giri S, Dixit G. Probing Electronic Symmetry Reduction during Charge Migration via Time-Resolved X-Ray Diffraction. Chemphyschem 2023; 24:e202200463. [PMID: 36166371 DOI: 10.1002/cphc.202200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Indexed: 01/19/2023]
Abstract
The present work focuses on probing ultrafast charge migration after symmetry-breaking excitation using ultrashort laser pulses. LiCN is chosen as prototypical system because it can be oriented in the laboratory frame and it possesses optically-accessible charge transfer states at low energies. The charge migration is simulated within the hybrid time-dependent density functional theory/configuration interaction framework. Time-resolved electronic current densities and simulated time-resolved x-ray diffraction signals are used to unravel the mechanism of charge migration. Our simulations demonstrate that specific choices of laser polarization lead to a control over the symmetry of the induced charge migration. Moreover, time-resolved x-ray diffraction signals are shown to encode transient symmetry reduction at intermediate times.
Collapse
Affiliation(s)
| | - Ambre Blanc
- CNRS-Université de Lorraine, LPCT, 57070, Metz, France
| | - Pascal Krause
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Sucharita Giri
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Gopal Dixit
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
7
|
Schnappinger T, Jadoun D, Gudem M, Kowalewski M. Time-resolved X-ray and XUV based spectroscopic methods for nonadiabatic processes in photochemistry. Chem Commun (Camb) 2022; 58:12763-12781. [PMID: 36317595 PMCID: PMC9671098 DOI: 10.1039/d2cc04875b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2023]
Abstract
The photochemistry of numerous molecular systems is influenced by conical intersections (CIs). These omnipresent nonadiabatic phenomena provide ultra-fast radiationless relaxation channels by creating degeneracies between electronic states and decide over the final photoproducts. In their presence, the Born-Oppenheimer approximation breaks down, and the timescales of the electron and nuclear dynamics become comparable. Due to the ultra-fast dynamics and the complex interplay between nuclear and electronic degrees of freedom, the direct experimental observation of nonadiabatic processes close to CIs remains challenging. In this article, we give a theoretical perspective on novel spectroscopic techniques capable of observing clear signatures of CIs. We discuss methods that are based on ultra-short laser pulses in the extreme ultraviolet and X-ray regime, as their spectral and temporal resolution allow for resolving the ultra-fast dynamics near CIs.
Collapse
Affiliation(s)
- Thomas Schnappinger
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Deependra Jadoun
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Mahesh Gudem
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
8
|
Schlegel HB, Hoerner P, Li W. Ionization of HCCI Neutral and Cations by Strong Laser Fields Simulated With Time Dependent Configuration Interaction. Front Chem 2022; 10:866137. [PMID: 35548678 PMCID: PMC9081608 DOI: 10.3389/fchem.2022.866137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/24/2022] [Indexed: 12/05/2022] Open
Abstract
Strong field ionization of neutral iodoacetylene (HCCI) can produce a coherent superposition of the X and A cations. This superposition results in charge migration between the CC π orbital and the iodine π-type lone pair which can be monitored by strong field ionization with short, intense probe pulses. Strong field ionization of the X and A states of HCCI cation was simulated with time-dependent configuration interaction using singly ionized configurations and singly excited, singly ionized configurations (TD-CISD-IP) and an absorbing boundary. Studies with static fields were used to obtain the 3-dimensional angular dependence of instantaneous ionization rates by strong fields and the orbitals involved in producing the cations and dications. The frequency of charge oscillation is determined by the energy separation of the X and A states; this separation can change depending on the direction and strength of the field. Furthermore, fields along the molecular axis can cause extensive mixing between the field-free X and A configurations. For coherent superpositions of the X and A states, the charge oscillations are characterized by two frequencies-the driving frequency of the laser field of the probe pulse and the intrinsic frequency due to the energy separation between the X and A states. For linear and circularly polarized pulses, the ionization rates show marked differences that depend on the polarization direction of the pulse, the carrier envelope phase and initial phase of the superposition. Varying the initial phase of the superposition at the beginning of the probe pulse is analogous to changing the delay between the pump and probe pulses. The charge oscillation in the coherent superposition of the X and A states results in maxima and minima in the ionization yield as a function of the superposition phase.
Collapse
|
9
|
Jia D, Yang Y. Systematic Investigation of the Reliability of the Frozen Nuclei Approximation for Short-Pulse Excitation: The Example of HCCI+. Front Chem 2022; 10:857348. [PMID: 35372267 PMCID: PMC8966390 DOI: 10.3389/fchem.2022.857348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
In this work we quantitatively study the reliability of the frozen nuclei approximation for ultrafast dynamics. Specifically we study laser excitation of HCCI+ from its ground state to the first electronically excited state. The population of the first excited state is obtained by both the frozen nuclei approximation and by multidimensional nuclear dynamics. Detailed comparison of the results by the two methods are performed to provide quantitative criteria for the reliability of the frozen nuclei approximation for this system.
Collapse
Affiliation(s)
- Dongming Jia
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
- *Correspondence: Yonggang Yang,
| |
Collapse
|
10
|
Ma J, Xu L, Ni H, Lu C, Zhang W, Lu P, Wen J, He F, Faucher O, Wu J. Transient Valence Charge Localization in Strong-Field Dissociative Ionization of HCl Molecules. PHYSICAL REVIEW LETTERS 2021; 127:183201. [PMID: 34767394 DOI: 10.1103/physrevlett.127.183201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 09/06/2021] [Accepted: 09/27/2021] [Indexed: 05/20/2023]
Abstract
Probing transient charge localization in the innershell orbital of atoms and molecules has been made possible by the recent progress of advanced light sources. Here, we demonstrate that the ultrafast electron tunneling ionization by an intense femtosecond laser pulse could induce an asymmetric transient charge localization in the valence shell of the HCl molecule during the dissociative ionization process. The transient charge localization is encoded in the laser impulse acquired by the outgoing ionic fragments, and the asymmetry is revealed by carefully examining the electron tunneling-site distinguished momentum angular distribution of the ejected H^{+} fragments. Our work proposes a way to visualize the transient valence charge motion and will stimulate further investigations of the tunneling-site-sensitive ultrafast dynamics of molecules in strong laser fields.
Collapse
Affiliation(s)
- Junyang Ma
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université Bourgogne Franche-Comté, BP 47870, 21078 Dijon, France
| | - Liang Xu
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongcheng Ni
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chenxu Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Wenbin Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Feng He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| | - Olivier Faucher
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université Bourgogne Franche-Comté, BP 47870, 21078 Dijon, France
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| |
Collapse
|
11
|
Schnappinger T, de Vivie-Riedle R. Coupled nuclear and electron dynamics in the vicinity of a conical intersection. J Chem Phys 2021; 154:134306. [PMID: 33832271 DOI: 10.1063/5.0041365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ultrafast optical techniques allow us to study ultrafast molecular dynamics involving both nuclear and electronic motion. To support interpretation, theoretical approaches are needed that can describe both the nuclear and electron dynamics. Hence, we revisit and expand our ansatz for the coupled description of the nuclear and electron dynamics in molecular systems (NEMol). In this purely quantum mechanical ansatz, the quantum-dynamical description of the nuclear motion is combined with the calculation of the electron dynamics in the eigenfunction basis. The NEMol ansatz is applied to simulate the coupled dynamics of the molecule NO2 in the vicinity of a conical intersection (CoIn) with a special focus on the coherent electron dynamics induced by the non-adiabatic coupling. Furthermore, we aim to control the dynamics of the system when passing the CoIn. The control scheme relies on the carrier envelope phase of a few-cycle IR pulse. The laser pulse influences both the movement of the nuclei and the electrons during the population transfer through the CoIn.
Collapse
|
12
|
Mineo H, Phan NL, La DK, Fujimura Y. Theoretical Study of Dynamic Stark-Induced π-Electron Rotations in Low-Symmetry Aromatic Ring Molecules beyond the Frozen Nuclear Approximation. J Phys Chem A 2021; 125:1476-1489. [PMID: 33570408 DOI: 10.1021/acs.jpca.0c10216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of vibrational motions on dynamic Stark-induced π-electron rotations in a low-symmetry aromatic ring molecule are theoretically studied in the adiabatic approximation. We adopt a simplified three-electronic state model with a few vibronic states. A pair of the lowest vibronic states in two electronic excited states is set degenerate by irradiation of two linearly polarized UV lasers. The resultant degenerate state is named the dynamic Stark-induced degenerate vibronic state (DSIDVS). The laser parameters (intensities and central frequencies) are determined under the conditions of DSIDVS formation. The aromatic ring molecules of interest are supposed to belong to the weak coupling case. The analytical expressions for the DSIDVS and coherent angular momentum LZ(t) are derived in the displaced harmonic oscillator (DHO) model. Two horizontal potential displacements (δα, δβ) between the two electronic excited states (α and β) and the ground state are the parameters in the DHO model. The LZ(t) calculated with δα = δβ is characterized by a regular sequence of the angular momentum pulses with a positive (or negative) constant. For a more general case with δα ≠ δβ, the regular sequence is broken down because of the contribution of the first excited vibronic state in each electronic state to LZ(t).
Collapse
Affiliation(s)
- Hirobumi Mineo
- Atomic Molecular and Optical Physics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ngoc-Loan Phan
- Department of Physics, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - Dung-Kiet La
- Department of Physics, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - Yuichi Fujimura
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578 Japan
| |
Collapse
|
13
|
Haase D, Manz J, Tremblay JC. Attosecond Charge Migration Can Break Electron Symmetry While Conserving Nuclear Symmetry. J Phys Chem A 2020; 124:3329-3334. [DOI: 10.1021/acs.jpca.0c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dietrich Haase
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jörn Manz
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jean Christophe Tremblay
- Laboratoire de Physique et Chimie Théoriques, CNRS-Université de Lorraine, UMR7019, 57070 Metz, France
| |
Collapse
|